943 resultados para statistical softwares


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of characteristics are boosting the eagerness of extending Ethernet to also cover factory-floor distributed real-time applications. Full-duplex links, non-blocking and priority-based switching, bandwidth availability, just to mention a few, are characteristics upon which that eagerness is building up. But, will Ethernet technologies really manage to replace traditional Fieldbus networks? Ethernet technology, by itself, does not include features above the lower layers of the OSI communication model. In the past few years, it is particularly significant the considerable amount of work that has been devoted to the timing analysis of Ethernet-based technologies. It happens, however, that the majority of those works are restricted to the analysis of sub-sets of the overall computing and communication system, thus without addressing timeliness at a holistic level. To this end, we are addressing a few inter-linked research topics with the purpose of setting a framework for the development of tools suitable to extract temporal properties of Commercial-Off-The-Shelf (COTS) Ethernet-based factory-floor distributed systems. This framework is being applied to a specific COTS technology, Ethernet/IP. In this paper, we reason about the modelling and simulation of Ethernet/IP-based systems, and on the use of statistical analysis techniques to provide usable results. Discrete event simulation models of a distributed system can be a powerful tool for the timeliness evaluation of the overall system, but particular care must be taken with the results provided by traditional statistical analysis techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia do Ambiente

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beyond the classical statistical approaches (determination of basic statistics, regression analysis, ANOVA, etc.) a new set of applications of different statistical techniques has increasingly gained relevance in the analysis, processing and interpretation of data concerning the characteristics of forest soils. This is possible to be seen in some of the recent publications in the context of Multivariate Statistics. These new methods require additional care that is not always included or refered in some approaches. In the particular case of geostatistical data applications it is necessary, besides to geo-reference all the data acquisition, to collect the samples in regular grids and in sufficient quantity so that the variograms can reflect the spatial distribution of soil properties in a representative manner. In the case of the great majority of Multivariate Statistics techniques (Principal Component Analysis, Correspondence Analysis, Cluster Analysis, etc.) despite the fact they do not require in most cases the assumption of normal distribution, they however need a proper and rigorous strategy for its utilization. In this work, some reflections about these methodologies and, in particular, about the main constraints that often occur during the information collecting process and about the various linking possibilities of these different techniques will be presented. At the end, illustrations of some particular cases of the applications of these statistical methods will also be presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented at 23rd International Conference on Real-Time Networks and Systems (RTNS 2015). 4 to 6, Nov, 2015, Main Track. Lille, France.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibody in human sera that induces lysis of sheep erythrocytes in hemolytic assay was investigated. The present study showed that the presence in serum of the thermostable cytolytic anti-sheep red blood cells antibodies is dependent on the Schistosoma mansoni infection, and this is more frequent in adults than in children. The thermostable characteristic of hemolysins in normal sera was not dependent on the presence of Ascaris lumbricoides, Trichuris trichiura or hookworm geo-helminths. Further, thermostable complement-activating heterophile antibodies were noticed in children in association with massive number of S. mansoni eggs. The results were obtained by using the z- and the chi-square tests. The z-test allows us to formulate a one-sided alternative, i.e., a tendency of one of the attributes. On the other hand, the chi-square test analyzes the independence between attributes by using a contingency table. Besides the obtained results being interesting in the field of schistosomiasis mansoni, they can provide a new insight into the use of statistics in medical science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A presente tese tem como principal objetivo a comparação entre dois software de CFD (Computer Fluid Dynamics) na simulação de escoamentos atmosféricos com vista à sua aplicação ao estudo e caracterização de parques eólicos. O software em causa são o OpenFOAM (Open Field Operation and Manipulation) - freeware open source genérico - e o Windie, ferramenta especializada no estudo de parques eólicos. Para este estudo foi usada a topografia circundante a um parque eólico situado na Grécia, do qual dispúnhamos de resultados de uma campanha de medições efetuada previamente. Para este _m foram usados procedimentos e ferramentas complementares ao Open-FOAM, desenvolvidas por da Silva Azevedo (2013) adequados para a realização do pré-processamento, extração de dados e pós-processamento, aplicados na simulação do caso pratico. As condições de cálculo usadas neste trabalho limitaram-se às usadas na simulação de escoamentos previamente simulados pelo software Windie: condições de escoamento turbulento, estacionário, incompressível e em regime não estratificado, com o recurso ao modelo de turbulência RaNS (Reynolds-averaged Navier-Stokes ) k - E atmosférico. Os resultados de ambas as simulações - OpenFOAM e Windie - foram comparados com resultados de uma campanha de medições, através dos valores de speed-up e intensidade turbulenta nas posições dos anemómetros.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Estatística

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuevas biotecnologías, como los marcadores de la molécula de ADN, permiten caracterizar el genoma vegetal. El uso de la información genómica producida para cientos o miles de posiciones cromosómicas permite identificar genotipos superiores en menos tiempo que el requerido por la selección fenotípica tradicional. La mayoría de los caracteres de las especies vegetales cultivadas de importancia agronómica y económica, son controlados por poli-genes causantes de un fenotipo con variación continua, altamente afectados por el ambiente. Su herencia es compleja ya que resulta de la interacción entre genes, del mismo o distinto cromosoma, y de la interacción del genotipo con el ambiente, dificultando la selección. Estas biotecnologías producen bases de datos con gran cantidad de información y estructuras complejas de correlación que requieren de métodos y modelos biométricos específicos para su procesamiento. Los modelos estadísticos focalizados en explicar el fenotipo a partir de información genómica masiva requieren la estimación de un gran número de parámetros. No existen métodos, dentro de la estadística paramétrica capaces de abordar este problema eficientemente. Además los modelos deben contemplar no-aditividades (interacciones) entre efectos génicos y de éstos con el ambiente que son también dificiles de manejar desde la concepción paramétrica. Se hipotetiza que el análisis de la asociación entre caracteres fenotípicos y genotipos moleculares, caracterizados por abundante información genómica, podría realizarse eficientemente en el contexto de los modelos mixtos semiparamétricos y/o de métodos no-paramétricos basados en técnicas de aprendizaje automático. El objetivo de este proyecto es desarrollar nuevos métodos para análisis de datos que permitan el uso eficiente de información genómica masiva en evaluaciones genéticas de interés agro-biotecnológico. Los objetivos específicos incluyen la comparación, respecto a propiedades estadísticas y computacionales, de estrategias analíticas paramétricas con estrategias semiparamétricas y no-paramétricas. Se trabajará con aproximaciones por regresión del análisis de loci de caracteres cuantitativos bajo distintas estrategias y escenarios (reales y simulados) con distinto volúmenes de datos de marcadores moleculares. En el área paramétrica se pondrá especial énfasis en modelos mixtos, mientras que en el área no paramétrica se evaluarán algoritmos de redes neuronales, máquinas de soporte vectorial, filtros multivariados, suavizados del tipo LOESS y métodos basados en núcleos de reciente aparición. La propuesta semiparamétrica se basará en una estrategia de análisis en dos etapas orientadas a: 1) reducir la dimensionalidad de los datos genómicos y 2) modelar el fenotipo introduciendo sólo las señales moleculares más significativas. Con este trabajo se espera poner a disposición de investigadores de nuestro medio, nuevas herramientas y procedimientos de análisis que permitan maximizar la eficiencia en el uso de los recursos asignados a la masiva captura de datos genómicos y su aplicación en desarrollos agro-biotecnológicos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de este proyecto, enmarcado en el área de metodología de análisis en bioingeniería-biotecnología aplicadas al estudio del cancer, es el análisis y caracterización a través modelos estadísticos con efectos mixtos y técnicas de aprendizaje automático, de perfiles de expresión de proteínas y genes de las vías metabolicas asociadas a progresión tumoral. Dicho estudio se llevará a cabo mediante la utilización de tecnologías de alto rendimiento. Las mismas permiten evaluar miles de genes/proteínas en forma simultánea, generando así una gran cantidad de datos de expresión. Se hipotetiza que para un análisis e interpretación de la información subyacente, caracterizada por su abundancia y complejidad, podría realizarse mediante técnicas estadístico-computacionales eficientes en el contexto de modelos mixtos y técnias de aprendizaje automático. Para que el análisis sea efectivo es necesario contemplar los efectos ocasionados por los diferentes factores experimentales ajenos al fenómeno biológico bajo estudio. Estos efectos pueden enmascarar la información subycente y así perder informacion relavante en el contexto de progresión tumoral. La identificación de estos efectos permitirá obtener, eficientemente, los perfiles de expresión molecular que podrían permitir el desarrollo de métodos de diagnóstico basados en ellos. Con este trabajo se espera poner a disposición de investigadores de nuestro medio, herramientas y procedimientos de análisis que maximicen la eficiencia en el uso de los recursos asignados a la masiva captura de datos genómicos/proteómicos que permitan extraer información biológica relevante pertinente al análisis, clasificación o predicción de cáncer, el diseño de tratamientos y terapias específicos y el mejoramiento de los métodos de detección como así tambien aportar al entendimieto de la progresión tumoral mediante análisis computacional intensivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estudios epidemiológicos, reportan que la fobia social es uno de los trastornos de ansiedad de alta prevalencia en la población mundial, que oscila entre el 7 y el 13%. La incidencia de este trastorno se ubica entre el 13 y 14% en personas de 15 a 54 años, manifestándose antes de los 25 años (Furmark,et al 2002). De esta manera, se destaca la importancia de el estudio y abordaje de este trastorno en adolecentes, considerando que es en esta etapa del desarrollo donde se empieza a manifestar, y donde la intervención temprana se torna fundamental. Este trastorno afecta la vida familiar, social y laboral de una persona, dado que la persona evita exponerse a lugares públicos o a situaciones donde anticipa la evaluación negativa. Las consecuencias del trastorno son variadas, ya que los individuos pueden perder su trabajo por miedo a la exposición, fracasar en los estudios o fracazar en la concertación de citas y la vida en pareja. El miedo a hablar en público, por otro lado, es una forma particular de ansiedad social que implica la preocupación de que el público va a pensar que el rendimiento de uno es inadecuado (o que evaluaranm negativamente la persona o el rendimiento de la misma). La relevancia social de esta problemática requiere de tratamientos más eficientes, dada la creciente prevalencia de estos trastornos en los últimos años a nivel internacional. En este sentido la terapia de exposición en diferentes modalidades, acompañada dereestructuración cognitiva se ha transformado en un abordjae de elección para estos trastornos ara el tratamiento de fobia social. Entre las modalidades más novedosas en la actualidad, se destaca la utilización de programas basados en escenarios virtuales y la utilización de la telepsicología para el tratamiento de la fobia social y el miedo a hablar en público. La exposición con realidad virtual o mediante simulaciones no sólo da la oportunidad de capitalizar las habilidades de imaginación del paciente sino también las suplementa con experiencias visuales y auditivas simuladas. Además expone al paciente a un ambiente virtual que contiene la situación temida en vez de llevar al paciente a una situación real o pedirle que imagine los estímulos asociados, aumentando de esta manera la eficiencia del tratamiento En particular en nuestro país, la investigación en este campo es inexistente y sus aplicaciones son incipientes, por lo que la adaptación, desarrollo y evaluación de programas de tratamiento clínico utilizando modalidades terapéuticas innovadoras, a la vez de otorgar atención a la comunidad que padece este tipo de trastornos, es fundamental Por esto, el propósito del presente proyecto es el desarrollo, la instrumentación y evaluación de software de telepsicología y tecnologías de realidad virtual orientados a la valoración y tratamiento de la Fobia Social y el miedo a Hablar en Público. Específicamente, el objetivo es adaptar, instrumentar y evaluar un sistema de tratamiento con base en ambientes virtuales para el tratamiento de la Fobia Social transferidos a nuestro equpio de investigación por el grupo de investigación del Laboratorio de Enseñanza Virtual y Ciberpsicología de la UNAM. También nos proponemos desarrollar dos softwares de telepsicología con videos digitales para la valoración y tratamiento del miedo a hablar en público. Finalmente, otro objetivo es el desarrollo de un instrumento de evaluación diagnóstica de la Fobia Social y el Miedo a Hablar en Público en estudiantes universitarios, el cual será incorporado a un software junto a los videos digitales.