989 resultados para statistical quantum field theory
Resumo:
It is by now well known that the Poincare group acts on the Moyal plane with a twisted coproduct. Poincare invariant classical field theories can be formulated for this twisted coproduct. In this paper we systematically study such a twisted Poincare action in quantum theories on the Moyal plane. We develop quantum field theories invariant under the twisted action from the representations of the Poincare group, ensuring also the invariance of the S-matrix under the twisted action of the group. A significant new contribution here is the construction of the Poincare generators using quantum fields.
Resumo:
We study a class of lattice field theories in two dimensions that includes gauge theories. We show that in these theories it is possible to implement a broader notion of local symmetry, based on semisimple Hopf algebras. A character expansion is developed for the quasitopological field theories, and partition functions are calculated with this tool. Expected values of generalized Wilson loops are defined and studied with the character expansion.
Resumo:
We consider the quantum field theory of two bosonic fields interacting via both parametric (cubic) and quartic couplings. In the case of photonic fields in a nonlinear optical medium, this corresponds to the process of second-harmonic generation (via chi((2)) nonlinearity) modified by the chi((3)) nonlinearity. The quantum solitons or energy eigenstates (bound-state solutions) are obtained exactly in the simplest case of two-particle binding, in one, two, and three space dimensions. We also investigate three-particle binding in one space dimension. The results indicate that the exact quantum solitons of this field theory have a singular, pointlike structure in two and three dimensions-even though the corresponding classical theory is nonsingular. To estimate the physically accessible radii and binding energies of the bound states, we impose a momentum cutoff on the nonlinear couplings. In the case of nonlinear optical interactions, the resulting radii and binding energies of these photonic particlelike excitations in highly nonlinear parametric media appear to be close to physically observable values.
Resumo:
We consider the parametric quantum field theory involving cubic and quartic couplings of two bosonic fields. This is exactly soluble for the two-particle energy eigenstates (or quantum solitons) in one, two, and three space dimensions. We estimate the binding energies and corresponding radii in the case of photonic fields in nonlinear optical materials, and Bose-Einstein condensates. [S1050-2947(98)51110-9].
Resumo:
A new parafermionic algebra associated with the homogeneous space A(2)((2))/U(1) and its corresponding Z-algebra have been recently proposed. In this paper, we give a free boson representation of the A(2)((2)) parafermion algebra in terms of seven free fields. Free field realizations of the parafermionic energy-momentum tensor and screening currents are also obtained. A new algebraic structure is discovered, which contains a W-algebra type primary field with spin two. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Motivated by application of current superalgebras in the study of disordered systems such as the random XY and Dirac models, we investigate gl(2\2) current superalgebra at general level k. We construct its free field representation and corresponding Sugawara energy-momentum tensor in the non-standard basis. Three screen currents of the first kind are also presented. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The recently developed variational Wigner-Kirkwood approach is extended to the relativistic mean field theory for finite nuclei. A numerical application to the calculation of the surface energy coefficient in semi-infinite nuclear matter is presented. The new method is contrasted with the standard density functional theory and the fully quantal approach.
Resumo:
We extend the relativistic mean field theory model of Sugahara and Toki by adding new couplings suggested by modern effective field theories. An improved set of parameters is developed with the goal to test the ability of the models based on effective field theory to describe the properties of finite nuclei and, at the same time, to be consistent with the trends of Dirac-Brueckner-Hartree-Fock calculations at densities away from the saturation region. We compare our calculations with other relativistic nuclear force parameters for various nuclear phenomena.
Resumo:
A new arena for the dynamics of spacetime is proposed, in which the basic quantum variable is the two-point distance on a metric space. The scaling dimension (that is, the Kolmogorov capacity) in the neighborhood of each point then defines in a natural way a local concept of dimension. We study our model in the region of parameter space in which the resulting spacetime is not too different from a smooth manifold.
Resumo:
A semiclassical coupled-wave theory is developed for TE waves in one-dimensional periodic structures. The theory is used to calculate the bandwidths and reflection/transmission characteristics of such structures, as functions of the incident wave frequency. The results are in good agreement with exact numerical simulations for an arbitrary angle of incidence and for any achievable refractive index contrast on a period of the structure.