629 resultados para spinning fineness


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the operational Sea Surface Temperature (SST) products derived from satellite infrared radiometry use multi-spectral algorithms. They show, in general, reasonable performances with root mean square (RMS) residuals around 0.5 K when validated against buoy measurements, but have limitations, particularly a component of the retrieval error that relates to such algorithms' limited ability to cope with the full variability of atmospheric absorption and emission. We propose to use forecast atmospheric profiles and a radiative transfer model to simulate the algorithmic errors of multi-spectral algorithms. In the practical case of SST derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG), we demonstrate that simulated algorithmic errors do explain a significant component of the actual errors observed for the non linear (NL) split window algorithm in operational use at the Centre de Météorologie Spatiale (CMS). The simulated errors, used as correction terms, reduce significantly the regional biases of the NL algorithm as well as the standard deviation of the differences with drifting buoy measurements. The availability of atmospheric profiles associated with observed satellite-buoy differences allows us to analyze the origins of the main algorithmic errors observed in the SEVIRI field of view: a negative bias in the inter-tropical zone, and a mid-latitude positive bias. We demonstrate how these errors are explained by the sensitivity of observed brightness temperatures to the vertical distribution of water vapour, propagated through the SST retrieval algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a combination of idealized radiative transfer simulations and a case study from the first field campaign of the Saharan Mineral Dust Experiment (SAMUM) in southern Morocco, this paper provides a systematic assessment of the limitations of the widely used Spinning Enhanced Visible and Infrared Imager (SEVIRI) red-green-blue (RGB) thermal infrared dust product. Both analyses indicate that the ability of the product to identify dust, via its characteristic pink coloring, is strongly dependent on the column water vapor, the lower tropospheric lapse rate, and dust altitude. In particular, when column water vapor exceeds ∼20–25 mm, dust presence, even for visible optical depths of the order 0.8, is effectively masked. Variability in dust optical properties also has a marked impact on the imagery, primarily as a result of variability in dust composition. There is a moderate sensitivity to the satellite viewing geometry, particularly in moist conditions. The underlying surface can act to confound the signal seen through variations in spectral emissivity, which are predominantly manifested in the 8.7μm SEVIRI channel. In addition, if a temperature inversion is present, typical of early morning conditions over the Sahara and Sahel, an increased dust loading can actually reduce the pink coloring of the RGB image compared to pristine conditions. Attempts to match specific SEVIRI observations to simulations using SAMUM measurements are challenging because of high uncertainties in surface skin temperature and emissivity. Recommendations concerning the use and interpretation of the SEVIRI RGB imagery are provided on the basis of these findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the molecular dynamics of one of the major macromolecules in articular cartilage, chondroitin sulfate. Applying (13)C high-resolution magic-angle spinning NMR techniques, the NMR signals of all rigid macromolecules in cartilage can be suppressed, allowing the exclusive detection of the highly mobile chondroitin sulfate. The technique is also used to detect the chondroitin sulfate in artificial tissue-engineered cartilage. The tissue-engineered material that is based on matrix producing chondrocytes cultured in a collagen gel should provide properties as close as possible to those of the natural cartilage. Nuclear relaxation times of the chondroitin sulfate were determined for both tissues. Although T(1) relaxation times are rather similar, the T(2) relaxation in tissue-engineered cartilage is significantly shorter. This suggests that the motions of chondroitin sulfate in data:rat and artificial cartilage different. The nuclear relaxation times of chondroitin sulfate in natural and tissue-engineered cartilage were modeled using a broad distribution function for the motional correlation times. Although the description of the microscopic molecular dynamics of the chondroitin sulfate in natural and artificial cartilage required the identical broad distribution functions for the correlation times of motion, significant differences in the correlation times of motion that are extracted from the model indicate that the artificial tissue does not fully meet the standards of the natural ideal. This could also be confirmed by macroscopic biomechanical elasticity measurements. Nevertheless, these results suggest that NMR is a useful tool for the investigation of the quality of artificially engineered tissue. (C) 2010 Wiley Periodicals, Inc. Biopolymers 93: 520-532, 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known residual gum exists in degummed or retted hemp fibres. Gum removal results in improvement in fibre fineness and the properties of the resultant hemp yarns. However, it is not known what correlation if any exists between the residual gum content in retted hemp fibres and the fibre fineness, described in terms of fibre width in this paper. This study examined the mean width and coefficient of variation (CV) of fibre width of seventeen chemically retted hemp samples with reference to residual gum content. The mean and CV of fibre width were obtained from an Optical fibre diameter analyser (OFDA 100). The linear regression analysis results show that the mean fibre width is directly proportional to the residual gum content. A slightly weaker linear correlation also exists between the coefficient of variation of fibre width and the residual gum content. The strong linear co-relation between the mean of fibre width and the residual gum content is a significant outcome, since testing for fibre width using the OFDA is a much simpler and quicker process than testing the residual gum content. Scanning Electron Microscopy (SEM) reinforces the OFDA findings. SEM micrographs show a flat ribbon like fibre cross-section hence the term “fibre width” is used instead of fibre diameter. Spectral differences in the untreated dry decorticated skin samples and chemically treated and subsequently carded samples indicate delignification. The peaks at 1370 cm−1, 1325 cm−1, 1733 cm−1, and 1600 cm−1 attributed to lignin in the untreated samples are missing from the spectra of the treated samples. The spectra of the treated samples are more amine-dominated with some of the OH character lost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spinning geometry of a ring frame plays an important role, and the twist triangle is the critical region in ring spinning. Changes in the spinning geometry may affect yarn properties. This paper examines the idea of ring spinning with a "diagonal" yarn path, and the effect of such a path on yam properties, particularly hairiness. Both "left diagonal" and "right diagonal" yam arrangements are tried on a 24-spindle Cognetex FLC worsted ring frame. The hairiness results obtained from the Zweigle hairiness meter show that the right diagonal yam path produces yams of lower hairiness than the conventional ring spun yarn in almost all the hair length groups. Yam evenness and tenacity are not as sensitive to the change in yarn path. The mean spindle speed at break is also tested, and there is some deterioration in spinning efficiency with the right diagonal yarn path, particularly at higher spinning speeds. Results from this study may help explain variations in yarns spun on poorly aligned ring frames.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ring spinning has been and will continue to be an important system for making staple yarns from different fibers in the textile industry. But high power consumption and low productivity remain the two outstanding problems with ring spinning. Based on an analysis of power distribution during yarn winding in ring spinning, models for the ratio of energy consumption to yarn production over a full yarn package are established. Spindle speed, yarn count, and package diameter are the three key parameters affecting this ratio. The effects on energy consumption of these parameters are discussed through a case study. The energy-to-production ratio increases with increased package diameter but decreases with increased spindle speed and/or yarn count (tex). The results will help guide spinners in minimizing energy consumption in ring spinning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of a yam package is established for a ring spinning system. The yarn layer, surface area, and mass of the yam package are formulated with respect to the diameters of the empty bobbin and full yarn package, yarn count, and yarn winding-on time. Based on the principles of dynamics and aerodynamics, models of the power requirements for overcoming the skin friction drag, increasing the kinetic energy of the yarn package (bobbin and wound yarn), and overcoming the yarn wind-on tension are developed. The skin friction coefficient on the surface of a rotating yam package is obtained from experiment. The power distribution during yam packaging is discussed based on a case study. The results indicate that overcoming the skin friction drag during yarn winding consumes the largest amount of energy. The energy required to overcome the yarn wind-on tension is also significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber fineness characteristics are important for yarn production and quality. In this paper, degummed bast fibers such as hemp, flax and ramie have been examined with the Optical Fiber Diameter Analyzer (OFDA100 and OFDA2000) systems for fiber fineness, in comparison with the conventional image analysis and the Wira airflow tester. The correlation between the results from these measurements was analysed. The results indicate that there is a significant linear co-relation between the fiber fineness measurement results obtained from those different systems. In addition, the mean fiber width and its coefficient of variation obtained from the OFDA100 system are smaller than those obtained from the OFDA2000 system, due to the difference in sample preparation methods. The OFDA2000 system can also measure the fiber fineness profile along the bast fiber plants, which can be useful for plant breeding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The skin friction coefficient on the surface of a rotating yarn package affects the power required to drive the package. This paper examines the relationship between the skin friction coefficient on the package surface and its diameter and rotating speed, based on the fundamentals of aerodynamics and the experimental results of power consumption. Skin friction coefficients on the surfaces of an airplane, car top, and yarn package are discussed. The results indicate that the skin friction coefficient on the package surface without hairiness depends on the package diameter and spindle speed only. The skin friction coefficient on the yarn package surface is about three times that on the top surface of a car, and is about twenty times that on an airplane surface. The power consumed to overcome skin friction drag is more than that consumed to drive the spindle if the spindle speed is very slow. However, the situation reverses when the spindle speed is fast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a given fiber spun to pre-determined yarn specifications, the spinning performance of the yarn usually varies from mill to mill. For this reason, it is necessary to develop an empirical model that can encompass all known processing variables that exist in different spinning mills, and then generalize this information and be able to accurately predict yarn quality for an individual mill. This paper reports a method for predicting worsted spinning performance with an artificial neural network (ANN) trained with backpropagation. The applicability of artificial neural networks for predicting spinning performance is first evaluated against a well established prediction and benchmarking tool (Sirolan YarnspecTM). The ANN is then subsequently trained with commercial mill data to assess the feasibility of the method as a mill-specific performance prediction tool. Incorporating mill-specific data results in an improved fit to the commercial mill data set, suggesting that the proposed method has the ability to predict the spinning performance of a specific mill accurately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yarn tension is a key factor that affects the efficiency of a ring spinning system. In this paper, a specially constructed rig, which can rotate a yarn at a high speed without inserting any real twist into the yarn, was used to simulate a ring spinning process. Yarn tension was measured at the guide-eye during the simulated spinning of different yarns at various balloon heights and with varying yarn length in the balloon. The effect of balloon shape, yarn hairiness and thickness, and yarn rotating speed, on the measured yarn tension, was examined. The results indicate that the collapse of balloon shape from single loop to double loop, or from double loop to triple etc, lead to sudden reduction in yarn tension. Under otherwise identical conditions, a longer length of yarn in the balloon gives a lower yarn tension at the guide-eye. In addition, thicker yarns and/or more hairy yarns generate a higher tension in the yarn, due to the increased air drag acting on the thicker or more hairy yarns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports theoretical and experimental investigation on yarn snarling and balloon fluttering in ring spinning. Yarn snarling and balloon fluttering affect yarn breakage in ring spinning. The theoretical model has incorporated the tangential component of air drag on a ballooning yarn, which was ignored in previous models. The results show that yarn snarling happens in the balloon when the ratio of yarn length in the balloon to balloon height is greater than a specific value that depends on the yarn type and count. Yarn tension experiences an obvious change before and after yarn snarling. The balloon flutter appears between normal balloons while the balloon loops are changing. Fluttering balloon shapes that oscillate periodically between two and three loop configurations as yarn tension varies periodically have also been observed experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Air drag on yarn and package surfaces affects yarn tension, which in turn affects energy consumption and ends-down in ring spinning. This study investigated the effects of yarn hairiness on air drag in ring spinning. Theoretical models of skin friction coefficient on the surface of rotating yarn packages were developed. The predicted results were verified with experimental data obtained from cotton and wool yarns. The results show that hairiness increases the air drag by about one-quarter and one-third for the rotating cotton and wool yarn packages, respectively. In addition, yarn hairiness increases the air drag by about one-tenth on a ballooning cotton yarn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ring spinning is the most important system of making high quality yarns in the textile industry. Yarn tension affects yarn breakage, which in turn affects yarn productivity in ring spinning. Accurate information about how various spinning parameters affect yarn tension is essential for the optimisation of the ring spinning process. In this paper, a program to simulate the ring spinning process was developed using MATLAB, which can predict yarn tension under given spinning conditions. The simulation results were verified with experimental results obtained from ring spinning cotton and wool yarns.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High energy consumption remains a key challenge for the widely used ring spinning system. Tackling this challenge requires a full understanding of the various factors that contribute to yarn tension and energy consumption during ring spinning. In this paper, we report our recent experimental and theoretical research on air drag, yarn tension and energy consumption in ring spinning. A specially constructed rig was used to simulate the ring spinning process; and yarn tension at the guide-eye was measured for different yarns under different conditions. The effect of yarn hairiness on the air drag acting on a rotating yarn package and on a ballooning yarn was examined. Models of the power requirements for overcoming the air drag, increasing the kinetic energy of the yarn package (bobbin and wound yarn) and overcoming the yarn wind-on tension were developed. The ratio of energy-consumption to yarn-production over a full yarn package was discussed. A program to simulate yarn winding in ring spinning was implemented, which can generate the balloon shape and predict yarn tension under a given spinning condition. The simulation results were verified with experimental results obtained from spinning cotton and wool yarns.