945 resultados para specific root length
Resumo:
Soil columns were produced by filling PVC tubes with a Dark Red Latosol (Acrortox, 22% of clay). A compacted layer was established at the depth of 15 cm in the columns. In the compacted layer, soil was packed to 1.13, 1.32, 1.48, and 1.82 Mg kg(-1), resulting in cone resistances of 0.18, 0.43, 1.20, and 2.50 MPa. Cotton was cropped for 30 days. Lime was applied to raise base saturation to 40, 52, and 67%. The highest base saturation caused a decrease in phosphorus (P) and zinc (Zn) concentrations in the plants. A decrease in root dry matter, length and surface area was also observed. This could be a consequence of lime induced Zn deficiency. Root growth was decreased in the compacted layer, and complete inhibition was noticed at 2.50 MPa. Once the roots got through the compacted layer, there was a growth recovery in the bottom layer of the pots. The increase in base saturation up 52% was effective in preventing a decrease in cotton root length at soil resistances to 1.20 MPa. Where the roots were shorter, there was an increase in nutrient uptake per unit of root surface area, which kept the plants well nourished, except for P.
Resumo:
A greenhouse experiment studied the effect of potassium fertilization on soybean (Glycine max L. Merrill) root morphology and on K absorption by six soybean cultivars of different maturation groups and growth habits. The Plants were grown up to 70 days after plant emergence, in pots containing 6.0 kg of soil. In the absence of K, no significant difference in K absorption was observed among the cultivars or in root length and surface, but root mean radius was correlated to K absorption. Differences in K absorption were not associated with root characteristics in the presence of K fertilization. Physiological adjustments in K uptake, as well as K availability in the soil, were more important in soybean nutrition than were morphological adjustments in the root system. The results were not associated with plant growth habit or with maturation group.
Resumo:
This study evaluated the influence of the cementation length of glass fiber-reinforced composite (FRC) on the fatigue resistance of bovine teeth restored with an adhesively cemented FRC. Thirty roots of single-rooted bovine teeth were allocated to 3 groups (n = 10), according to the ratio of crown length/root length (post cementation length): group 1 = 2/3, group 2 = 1/2, and group 3 = 1/1. The roots were prepared, the fiber posts (FRC Postec Plus) were cemented, and the specimens were submitted to 2 million mechanical cycles. After fatigue testing, a score was given based on the number of fatigue cycles until fracture, and data were submitted to statistical analysis. All specimens were resistant to fatigue. Taking into account the methodology and results of this study, the evaluated fiber posts can be cemented based on the ratio of crown/root at 1/1. Further clinical studies must be conducted to verify this ratio.
Resumo:
Soil compaction has a negative effect and Ca was shown to enhance root growth. The effects of soil subsurface compaction and liming on root growth and nutrient uptake by soybean were studied at the Department of Agriculture and Plant Breeding, São Paulo State University, Brazil. A Dark Red Latosol, sandy loam (Haplortox) was limed to raise base saturations to 40.1, 52.4 and 66.7%. The experimental pots were made of PVC tubes with 100 mm of diameter. Three rings with 150, 35 and 150 mm long were fixed one on the top of the other. In the central ring of 35 mm, the soil was compacted to bulk densities of 1.06, 1.25, 1.43 and 1.71 g.cm(-3). There was no effect of base saturation on soybean root and shoot growth and nutrition. Subsurface compaction led to an increase in root growth in the superficial layer of the pots with a correspondent quadratic decrease in the compacted layer. There was no effect of subsoil compaction on total root length and surface, soybean growth and nutrition. Soybean root growth was decreased by 10% and 50% when the soil penetrometer resistances were 0.52 MPa (bulk density of 1.45 g.cm(-1)) and 1.45 MPa (bulk density of 1.69 g.cm(-3)), respectively. In spite of the poor root growth in the compacted layer, once it nas overcome the root system showed an almost complete recovery.
Resumo:
Toxic levels of Al and low availability of Ca have been shown to decrease root growth, which can also be affected by P availability. In the current experiment, initial plant growth and nutrition of cotton (Gossypium hirsutum var. Latifolia) were studied as related to its root growth in response to phosphorus and lime application. The experiment was conducted in Botucatu, Sao Paulo, Brazil, in pots containing a Dark Red Latosol (Acrortox, 20% clay, 72% sand). Lime was applied at 0.56, 1.12 and 1.68 g kg -1 and phosphorus was applied at 50, 100 and 150 mg kg -1. Two cotton (cv. IAC 22) plants were grown per pot for up to 42 days after plant emergence. There was no effect of liming on shoot dry weight, root dry matter yield, root surface and length, but root diameter was decreased with the increase in soil Ca. Shoot dry weight, as well as root length, surface and dry weight were increased with soil P levels up to 83 mg kg -1. Phosphorus concentration in the shoots was increased from 1.6 to 3.0 g kg -1 when soil P was increased from 14 to 34 mg kg -1. No further increases in P concentration were observed with higher P rates. The shoot/root ratio was also increased with P application as well as the amount of nutrients absorbed per unit of root surface. In low soil P soils the transport of the nutrient to the cotton root surface limits P uptake. In this case an increase in root growth rate due to P fertilisation does not compensate for the low P diffusion in the soil.
Resumo:
The present work was conducted with the objective to study the effects of mineral nutrition on Eucalyptus grandis and Brachiaria decumbens (#BRADC) growth, when submitted to inter- and intra-specific competition. The treatments consisted of two plants of Eucalypts/pot, two plants of BRADC/pot, and one plant of each species/pot. The plants were nourished with the Hoagland e Arnon (1950) complete solution; with no K, P or N; or only with either N, P or K. Sixty days after growing side by side, no effect of the inter- and intra-specific competition on eucalypts plant high, branch number and leaf dry mass was observed. When mineral nutrition did not limit plant growth (complete solution or solution with no K), intra-specific competition reduced on average, 23% of eucalypts root length, leaf area, and stem and root dry mass, and inter-specific competition reduced, on average, 75% of BRADC dry mass. When mineral nutrition became a limiting factor, no plant competition effect on the parameters studied was detected.
Resumo:
Crop rotation using cover crops with vigorous root systems may be a tool to manage soils with some degree of compaction. Root and shoot growth as well as nutrient accumulation by summer species suitable for crop rotation in tropical areas were studied at different subsoil compaction levels. Crotalaria juncea (Indian hemp), Crotalaria spectabilis (showy crotalaria), Helianthus annuus (sunflower), Pennisetum americanum (pearl millet) and Sorghum bicolor (guinea sorghum) were grown for 40 days in pots 33.5 cm high with 10 cm internal diameter. Soil in the pots had uniform bulkdensity of 1.25 Mg m-3 for the top and bottom 15 cm sections. Bulk densities of 1.31, 1.43, 1.58 and 1.70 Mg m-3 Were established in the 3.5 cm middle section. H. annuus and P. americanum had the highest early macronutrient accumulation. The grasses S. bicolor and P. americanum yielded twice as much shoot dry matter as the other species. Root growth generally decreased with increasing soil bulk density with C. spectabilis less affected than other species. Although the grasses were more sensitive to high soil penetration resistance, they showed higher root length densities at all compaction levels. P. americanum had the highest potential to be used as cover crop due to its high root density at high soil penetration resistances, vegetative vigour and ability to accumulate macronutrients. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
AIM: To evaluate the occurrence of external apical root resorption (EARR) in the incisors after anterior retraction in corrective orthodontic treatment with first premolar extractions and whether it was related with the type of root apex movement and its inclination. METHOD: The maxillary and mandibular incisors of 22 patients (12 to 25 years of age; 9 males and 13 females) were treated with fixed appliances and premolar extraction. EARR was defined as the difference in root length before and after incisal retraction on periapical radiographs. Distortion of radiographic images and changes due to incisal tipping were controlled for. Pre- and post-incisal retraction lateral cephalometric radiographs established the relationship between EARR and the tipping of the incisors, along with the vertical, horizontal, and total movement of the root apex. RESULTS: There was significant EARR (1.51 to 2.37 mm) during incisor retraction, but this was not related to the movement or the tipping of the root apex of almost all teeth. It was observed that after the retraction stage, EARR occurred in all evaluated incisors, but it was more significant (P < .05) in the mandibular right lateral incisor. CONCLUSION: The EARR that did occur was unrelated to movement or tipping of the root apex, except for the vertical root apex movement of the mandibular left central incisor and the inclination of the maxillary right lateral incisor.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Uncommon crown-root fracture treated with adhesive tooth fragment reattachment: 7 years of follow-up
Resumo:
Crown-root fractures account for 5% of all fractures in permanent teeth and can involve enamel, dentin, and cementum. Depending on whether there is pulpal involvement, these problems may be classified as complicated (which are more common) or noncomplicated. The treatment depends on the level of the fracture line, root length and/or morphology, and esthetic needs. Several treatment strategies are available for esthetic and functional rehabilitation in crown-root fractures. Adhesive tooth fragment reattachment is the most conservative restorative option when the tooth fragment is available and the biological width has no or minimal violation. This article reports a case of an uncomplicated crown-root fracture in the permanent maxillary right central incisor of a young patient who received treatment with adhesive tooth fragment reattachment, preserving the anatomic characteristics of the fractured tooth after periodontal intervention. The fracture line of the fragment had an unusual shape, starting on the palatal side and extending to the buccal side subgingivally. After 7 years, the attached coronal fragment remained in position with good esthetics, as well as clinical and radiographic signs of pulpal vitality, periodontal health, and root integrity, thus indicating success.
Resumo:
Abscisic acid (ABA) is an important regulator of plant responses to environmental stresses and an absolute requirement for stress tolerance. Recently, a third phytoene synthase (PSY3) gene paralog was identified in monocots and demonstrated to play a specialized role in stress-induced ABA formation, thus suggesting that the first committed step in carotenogenesis is a key limiting step in ABA biosynthesis. To examine whether the ectopic expression of PSY, other than PSY3, would similarly affect ABA level and stress tolerance, we have produced transgenic tobacco containing a fruit-specific PSY (CpPSY) of grapefruit (Citrus paradisi Macf.). The transgenic plants contained a single- or double-locus insertion and expressed CpPSY at varying transcript levels. In comparison with the wild-type plants, the CpPSY expressing transgenic plants showed a significant increase on root length and shoot biomass under PEG-, NaCl- and mannitol-induced osmotic stress. The enhanced stress tolerance of transgenic plants was correlated with the increased endogenous ABA level and expression of stress-responsive genes, which in turn was correlated with the CpPSY copy number and expression level in different transgenic lines. Collectively, these results provide further evidence that PSY is a key enzyme regulating ABA biosynthesis and that the altered expression of other PSYs in transgenic plants may provide a similar function to that of the monocot's PSY3 in ABA biosynthesis and stress tolerance. The results also pave the way for further use of CpPSY, as well as other PSYs, as potential candidate genes for engineering tolerance to drought and salt stress in crop plants.
Resumo:
SUMMARY BACKGROUND/OBJECTIVES Orthodontic management of maxillary canine impaction (MCI), including forced eruption, may result in significant root resorption; however, the association between MCI and orthodontically induced root resorption (OIRR) is not yet sufficiently established. The purpose of this retrospective cohort study was to comparatively evaluate the severity of OIRR of maxillary incisors in orthodontically treated patients with MCI. Additionally, impaction characteristics were associated with OIRR severity. SUBJECTS AND METHODS The sample comprised 48 patients undergoing fixed-appliance treatment-24 with unilateral/bilateral MCI and 24 matched controls without impaction. OIRR was calculated using pre- and post-operative panoramic tomograms. The orientation of eruption path, height, sector location, and follicle/tooth ratio of the impacted canine were also recorded. Mann-Whitney U-test and univariate and multivariate linear mixed models were used to test for the associations of interest. RESULTS Maxillary central left incisor underwent more OIRR in the impaction group (mean difference = 0.58mm, P = 0.04). Overall, the impaction group had 0.38mm more OIRR compared to the control (95% confidence interval, CI: 0.03, 0.74; P = 0.04). However, multivariate analysis demonstrated no difference in the amount of OIRR between impaction and non-impaction groups overall. A positive association between OIRR and initial root length was observed (95% CI: 0.08, 0.27; P < 0.001). The severity of canine impaction was not found to be a significant predictor of OIRR. LIMITATIONS This study was a retrospective study and used panoramic tomograms for OIRR measurements. CONCLUSIONS This study indicates that MCI is a weak OIRR predictor. Interpretation of the results needs caution due to the observational nature of the present study.
Resumo:
Background and aims Differences in chemical composition of root compounds and root systems among tree species may affect organic matter (OM) distribution, source and composition in forest soils. The objective of this study was to elucidate the contribution of species specific cutin and suberin biomarkers as proxies for shoot- and root-derived organic carbon (OC) to soil OM at different depths with increasing distance to the stems of four different tree species. Methods The contribution of cutin- and suberin-derived lipids to OM in a Cutanic Alisol was analyzed with increasing soil depth and distance to the stems of Fagus sylvatica L., Picea abies (L.) Karst., Quercus robur L. and Pseudotsuga menziesii (Mirb.) Franco. Cutin and suberin monomers of plants and soils were analyzed by alkaline hydrolysis and subsequent gas chromatography–mass spectrometry. Results The amount and distribution of suberin-derived lipids in soil clearly reflected the specific root system of the different tree species. The amount of cutin-derived lipids decreased strongly with soil depth, indicating that the input of leaf/needle material is restricted to the topsoil. In contrast to the suberin-derived lipids, the spatial pattern of cutin monomer contribution to soil OM did not depend on tree species. Conclusions Our results document the importance of tree species as a main factor controlling the composition and distribution of OM in forest soils. They reveal the impact of tree species on root-derived OM distribution and the necessity to distinguish among different zones when studying soil OM storage in forests.
Resumo:
El objetivo fue determinar la concentración efectiva media de reducción del crecimiento radical (CE50), de una formulación del herbicida glifosato mediante bioensayos de germinación con semillas de lechuga y de trigo. Para lechuga se probaron 9 dosis/tratamientos decrecientes entre 1.215 y 0,01215 g i.a.ha-1 (formulado: Sal amónica de la N-Fosfonometil glicina, 40,5 [g e.a. glifosato 36,9% p/v]) y para trigo 5 dosis decrecientes (entre 12,15 y 1,215 g i.a.ha-1) y su respectivo control negativo (agua destilada). Se utilizaron cajas de Petri, con papel de filtro en la base humedecido con 3 ml de la solución correspondiente. Se sembraron 20 semillas por caja, distribuyéndose los tratamientos en bloques al azar con 4 repeticiones, en cámara de crecimiento a 20°C con alternancia de luz y oscuridad. Se midió la longitud radicular de todas las semillas de cada tratamiento con calibre digital. Se determinó el porcentaje de germinación y se calculó el índice de germinación. Las CE50, es decir, las dosis que redujeron en un 50% el crecimiento radical para lechuga y trigo, fueron 6,682 y 9,416 g i.a.ha-1, respectivamente. Los materiales probados resultaron sensibles a distintas dosis de glifosato y por lo tanto pueden utilizarse como indicadores biológicos de toxicidad específica.