960 resultados para spatial modelling


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Within the building evacuation context, wayfinding describes the process in which an individual located within an arbitrarily complex enclosure attempts to find a path which leads them to relative safety, usually the exterior of the enclosure. Within most evacuation modelling tools, wayfinding is completely ignored; agents are either assigned the shortest distance path or use a potential field to find the shortest path to the exits. In this paper a novel wayfinding technique that attempts to represent the manner in which people wayfind within structures is introduced and demonstrated through two examples. The first step is to encode the spatial information of the enclosure in terms of a graph. The second step is to apply search algorithms to the graph to find possible routes to the destination and assign a cost to the routes based on their personal route preferences such as "least time" or "least distance" or a combination of criteria. The third step is the route execution and refinement. In this step, the agent moves along the chosen route and reassesses the route at regular intervals and may decide to take an alternative path if the agent determines that an alternate route is more favourable e.g. initial path is highly congested or is blocked due to fire.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We survey the literature on spatial bio-economic and land-use modelling and assess its thematic development. Unobserved site-specific heterogeneity is a feature of almost all the surveyed works, and this feature, it seems, has stimulated significant methodological innovation. In an attempt to improve the suitability with which the prototype incorporates heterogeneity, we consider modelling alternatives and extensions. We discuss solutions and conjecture others.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We survey the literature on spatial bio-economic and land-use modelling and assess its thematic development. Unobserved site-specific heterogeneity is a feature of almost all the surveyed works, and this feature, it seems, has stimulated significant methodological innovation. In an attempt to improve the suitability with which the prototype incorporates heterogeneity, we consider modelling alternatives and extensions. We discuss solutions and conjecture others.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High spatial resolution environmental data gives us a better understanding of the environmental factors affecting plant distributions at fine spatial scales. However, large environmental datasets dramatically increase compute times and output species model size stimulating the need for an alternative computing solution. Cluster computing offers such a solution, by allowing both multiple plant species Environmental Niche Models (ENMs) and individual tiles of high spatial resolution models to be computed concurrently on the same compute cluster. We apply our methodology to a case study of 4,209 species of Mediterranean flora (around 17% of species believed present in the biome). We demonstrate a 16 times speed-up of ENM computation time when 16 CPUs were used on the compute cluster. Our custom Java ‘Merge’ and ‘Downsize’ programs reduce ENM output files sizes by 94%. The median 0.98 test AUC score of species ENMs is aided by various species occurrence data filtering techniques. Finally, by calculating the percentage change of individual grid cell values, we map the projected percentages of plant species vulnerable to climate change in the Mediterranean region between 1950–2000 and 2020.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Urbanization related alterations to the surface energy balance impact urban warming (‘heat islands’), the growth of the boundary layer, and many other biophysical processes. Traditionally, in situ heat flux measures have been used to quantify such processes, but these typically represent only a small local-scale area within the heterogeneous urban environment. For this reason, remote sensing approaches are very attractive for elucidating more spatially representative information. Here we use hyperspectral imagery from a new airborne sensor, the Operative Modular Imaging Spectrometer (OMIS), along with a survey map and meteorological data, to derive the land cover information and surface parameters required to map spatial variations in turbulent sensible heat flux (QH). The results from two spatially-explicit flux retrieval methods which use contrasting approaches and, to a large degree, different input data are compared for a central urban area of Shanghai, China: (1) the Local-scale Urban Meteorological Parameterization Scheme (LUMPS) and (2) an Aerodynamic Resistance Method (ARM). Sensible heat fluxes are determined at the full 6 m spatial resolution of the OMIS sensor, and at lower resolutions via pixel aggregation and spatial averaging. At the 6 m spatial resolution, the sensible heat flux of rooftop dominated pixels exceeds that of roads, water and vegetated areas, with values peaking at ∼ 350 W m− 2, whilst the storage heat flux is greatest for road dominated pixels (peaking at around 420 W m− 2). We investigate the use of both OMIS-derived land surface temperatures made using a Temperature–Emissivity Separation (TES) approach, and land surface temperatures estimated from air temperature measures. Sensible heat flux differences from the two approaches over the entire 2 × 2 km study area are less than 30 W m− 2, suggesting that methods employing either strategy maybe practica1 when operated using low spatial resolution (e.g. 1 km) data. Due to the differing methodologies, direct comparisons between results obtained with the LUMPS and ARM methods are most sensibly made at reduced spatial scales. At 30 m spatial resolution, both approaches produce similar results, with the smallest difference being less than 15 W m− 2 in mean QH averaged over the entire study area. This is encouraging given the differing architecture and data requirements of the LUMPS and ARM methods. Furthermore, in terms of mean study QH, the results obtained by averaging the original 6 m spatial resolution LUMPS-derived QH values to 30 and 90 m spatial resolution are within ∼ 5 W m− 2 of those derived from averaging the original surface parameter maps prior to input into LUMPS, suggesting that that use of much lower spatial resolution spaceborne imagery data, for example from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is likely to be a practical solution for heat flux determination in urban areas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An impediment to sustainable dryland salinity management is the lack of information on contributing factors. GIS and satellite imagery now offer a cost-effective means of generating relevant land and water resource information for integrated regional management of salinity. In this paper the relationships between patterns in land uselcover distribution and base flow salt concentration in streams (indicated by EC) are investigated and modelled. The Glenelg-Hopkins area is a large regional watershed in southwest Victoria, Australia, covering approximately 2.6 million ha. It is currently estimated that 27,400 ha of land is affected by dryland salinity and this is predicted to rapidly increase in the next decade' if current conditions prevail. Salt concentration data from five gauging stations were analysed with multi-temporal land use maps obtained from satellite imagery. Multiple regression analyses demonstrated that the variables Native Vegetation and Dry/and Grain Cropping were the most significant influences on in~stream salinity in the whole catchment (1=88.9%) and 500 m V=88.3%) and 100 m riparian buffers (1=86.9%) during times of base flow. The implications for future land use planning, effectiveness of riparian zones and revegetation programmes is discussed. This work also demonstrates the utility of applying nmltivariate statistical analyses, spatial statistics, and remote sensing with data integrated in a GIS framework for the purpose of predicting and managing the regional salinity threat.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A major challenge facing freshwater ecologists and managers is the development of models that link stream ecological condition to catchment scale effects, such as land use. Previous attempts to make such models have followed two general approaches. The bottom-up approach employs mechanistic models, which can quickly become too complex to be useful. The top-down approach employs empirical models derived from large data sets, and has often suffered from large amounts of unexplained variation in stream condition.

We believe that the lack of success of both modelling approaches may be at least partly explained by scientists considering too wide a breadth of catchment type. Thus, we believe that by stratifying large sets of catchments into groups of similar types prior to modelling, both types of models may be improved. This paper describes preliminary work using a Bayesian classification software package, ‘Autoclass’ (Cheeseman and Stutz 1996) to create classes of catchments within the Murray Darling Basin based on physiographic data.

Autoclass uses a model-based classification method that employs finite mixture modelling and trades off model fit versus complexity, leading to a parsimonious solution. The software provides information on the posterior probability that the classification is ‘correct’ and also probabilities for alternative classifications. The importance of each attribute in defining the individual classes is calculated and presented, assisting description of the classes. Each case is ‘assigned’ to a class based on membership probability, but the probability of membership of other classes is also provided. This feature deals very well with cases that do not fit neatly into a larger class. Lastly, Autoclass requires the user to specify the measurement error of continuous variables.

Catchments were derived from the Australian digital elevation model. Physiographic data werederived from national spatial data sets. There was very little information on measurement errors for the spatial data, and so a conservative error of 5% of data range was adopted for all continuous attributes. The incorporation of uncertainty into spatial data sets remains a research challenge.

The results of the classification were very encouraging. The software found nine classes of catchments in the Murray Darling Basin. The classes grouped together geographically, and followed altitude and latitude gradients, despite the fact that these variables were not included in the classification. Descriptions of the classes reveal very different physiographic environments, ranging from dry and flat catchments (i.e. lowlands), through to wet and hilly catchments (i.e. mountainous areas). Rainfall and slope were two important discriminators between classes. These two attributes, in particular, will affect the ways in which the stream interacts with the catchment, and can thus be expected to modify the effects of land use change on ecological condition. Thus, realistic models of the effects of land use change on streams would differ between the different types of catchments, and sound management practices will differ.

A small number of catchments were assigned to their primary class with relatively low probability. These catchments lie on the boundaries of groups of catchments, with the second most likely class being an adjacent group. The locations of these ‘uncertain’ catchments show that the Bayesian classification dealt well with cases that do not fit neatly into larger classes.

Although the results are intuitive, we cannot yet assess whether the classifications described in this paper would assist the modelling of catchment scale effects on stream ecological condition. It is most likely that catchment classification and modelling will be an iterative process, where the needs of the model are used to guide classification, and the results of classifications used to suggest further refinements to models.