881 resultados para soluble guanylyl cyclase activators
Resumo:
This study investigated the nature of vasodilator mechanisms in the dorsal aorta of the giant shovelnose ray, Rhinobatus typus. Anatomical techniques found no evidence for an endothelial nitric oxide synthase, but neural nitric oxide synthase was found to be present in the perivascular nerve fibres of the dorsal aorta and other arteries and veins using both NADPH-diaphorase staining and immunohistochemistry with a specific neural NOS antibody. Arteries and veins both contained large nNOS-positive nerve trunks from which smaller nNOS-positive bundles branched and formed a plexus in the vessel wall. Single, varicose nNOS-positive nerve fibres were present in both arteries and veins. Within the large bundles of both arteries and veins, groups of nNOS-positive cell bodies forming microganglia were observed. Double-labelling immunohistochemistry using an antibody to tyrosine hydroxylase showed that nearly all the NOS nerves were not sympathetic. Acetylcholine always caused constriction of isolated rings of the dorsal aorta and the nitric oxide donor, sodium nitroprusside, did not mediate any dilation. Addition of nicotine (3 x 10(-4) M) to preconstricted rings caused a vasodilation that was not affected by the nitric oxide synthase inhibitor, L-NNA (10(-4) M), nor the soluble guanylyl cyclase inhibitor, ODQ (10(-5) M). This nicotine-mediated vasodilation was, therefore, not due to the synthesis and release of NO. Disruption of the endothelium significantly reduced or eliminated the nicotine-mediated vasodilation. In addition. indomethacin (10(-5) M), an inhibitor of cyclooxygenases, significantly increased the time period to maximal dilation and reduced, but did not completely inhibit the nicotine-mediated vasodilation. These data support the hypothesis that a prostaglandin is released from the vascular endothelium of a batoid ray, as has been described previously in other groups of fishes. The function of the nitrergic innervation of the blood vessels is not known because nitric oxide does not appear to regulate vascular tone. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Locomotor recovery from anoxia is complicated and little is known about the molecular and cellular mechanisms regulating anoxic recovery in Drosophila. For this thesis I established a protocol for large-scale analysis of locomotor activity in adult flies with exposure to a transient anoxia. Using this protocol I observed that wild-type Canton-S flies recovered faster and more consistently from anoxia than the white-eyed mutant w1118, which carries a null allele of w1118 in an isogenic genetic background. Both Canton-S and w1118 are commonly used controls in the Drosophila community. Genetic analysis including serial backcrossing, RNAi knockdown, w+ duplication to Y chromosome as well as gene mutation revealed a strong association between the white gene and the timing of locomotor recovery. I also found that the locomotor recovery phenotype is independent of white-associated eye pigmentation, that heterozygous w+ allele was haplo-insufficient to induce fast and consistent locomotor recovery from anoxia in female flies, and that mini-white is insufficient to promote fast and consistent locomotor recovery. Moreover, locomotor recovery was delayed in flies with RNAi knockdown of white in subsets of serotonin neurons in the central nervous system. I further demonstrated that mutations of phosphodiesterase genes (PDE) displayed wild-type-like fast and consistent locomotor recovery, and that locomotor recovery was light-sensitive in the night in w1118. The delayed locomotor recovery and the light sensitivity were eliminated in PDE mutants that were dual-specific or cyclic guanosine monophosphate (cGMP)-specific. Up-regulation of cGMP using multiple approaches including PDE mutation, sildenafil feeding or specific expression of an atypical soluble guanylyl cyclase (Gyc88E) was sufficient to suppress w-RNAi induced delay of locomotor recovery. Taken together, these data strongly support the hypothesis that White transports cGMP and promotes fast and consistent locomotor recovery from anoxia.
Resumo:
Despite considerable concerns with pharmacological stimulation of fetal hemoglobin (Hb F) as a therapeutic option for the β-globin disorders, the molecular basis of action of Hb F-inducing agents remains unclear. Here we show that an intracellular pathway including soluble guanylate cyclase (sGC) and cGMP-dependent protein kinase (PKG) plays a role in induced expression of the γ-globin gene. sGC, an obligate heterodimer of α- and β-subunits, participates in a variety of physiological processes by converting GTP to cGMP. Northern blot analyses with erythroid cell lines expressing different β-like globin genes showed that, whereas the β-subunit is expressed at similar levels, high-level expression of the α-subunit is preferentially observed in erythroid cells expressing γ-globin but not those expressing β-globin. Also, the levels of expression of the γ-globin gene correlate to those of the α-subunit. sGC activators or cGMP analogs increased expression of the γ-globin gene in erythroleukemic cells as well as in primary erythroblasts from normal subjects and patients with β-thalassemia. Nuclear run-off assays showed that the sGC activator protoporphyrin IX stimulates transcription of the γ-globin gene. Furthermore, increased expression of the γ-globin gene by well known Hb F-inducers such as hemin and butyrate was abolished by inhibiting sGC or PKG activity. Taken together, these results strongly suggest that the sGC–PKG pathway constitutes a mechanism that regulates expression of the γ-globin gene. Further characterization of this pathway should permit us to develop new therapeutics for the β-globin disorders.
Resumo:
The Rv1625c Class III adenylyl cyclase from Mycobacterium tuberculosis is a homodimeric enzyme with two catalytic centers at the dimer interface, and shows sequence similarity with the mammalian adenylyl and guanylyl cyclases. Mutation of the substrate-specifying residues in the catalytic domain of Rv1625c, either independently or together, to those present in guanylyl cyclases not only failed to confer guanylyl cyclase activity to the protein, but also severely abrogated the adenylyl cyclase activity of the enzyme. Biochemical analysis revealed alterations in the behavior of the mutants on ion-exchange chromatography, indicating differences in the surface-exposed charge upon mutation of substrate-specifying residues. The mutant proteins showed alterations in oligomeric status as compared to the wild-type enzyme, and differing abilities to heterodimerize with the wild-type protein. The crystal structure of a mutant has been solved to a resolution of 2.7 angstrom. On the basis of the structure, and additional biochemical studies, we provide possible reasons for the altered properties of the mutant proteins, as well as highlight unique structural features of the Rv1625c adenylyl cyclase. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Le récepteur A des peptides natriurétiques (NPRA) fait partie de la famille des guanylates cyclases membranaires. L’activation du NPRA par ses agonistes naturels, ANP et BNP, induit une production de GMPc qui est responsable de leur rôle dans l’homéostasie cardiovasculaire, l’inhibition de l’hypertrophie et de la fibrose cardiaques et la régulation de la lipolyse. Le NPRA est un homodimère non covalent composé d’un domaine extracellulaire de liaison du ligand (ECD), d’un unique domaine transmembranaire (TM), d’un domaine d’homologie aux kinases et d’un domaine guanylate cyclase. Bien que le NPRA ait un rôle physiologique important, les mécanismes moléculaires régissant son processus d’activation restent inconnus. Nous avons donc analysé les premières étapes du processus d’activation du NPRA. Nous avons d'abord étudié le rôle de la dimérisation des ECD dans l’activation du récepteur. Nous avons utilisé les techniques de liaison de radioligand, de FRET et de modélisation moléculaire, pour caractériser la liaison à l’ECD des agonistes naturels, d’un superagoniste et d’un antagoniste. L’ANP se lie à un dimère d’ECD préformé et la dimérisation spontanée est l’étape limitante du processus de liaison. De plus, comme le démontrent nos études de FRET, tous les peptides, incluant l’antagoniste, stabilisent le récepteur sous sa forme dimérique. Cependant, l’antagoniste A71915 stabilise le dimère d’ECD dans une conformation différente de celle induite par l’ANP. La dimérisation du NPRA semble donc nécessaire, mais non suffisante à l’activation du récepteur. L’état d’activation du NPRA dépend plutôt de l’orientation des sous unités dans le dimère. Nous avons ensuite étudié le mécanisme moléculaire de transduction du signal à travers la membrane. Plusieurs études ont suggéré que l’activation du NPRA implique un changement de conformation du domaine juxtamembranaire (JM). Cependant, les études de cristallographie de l’ECD soluble de NPRA n’ont pas permis de documenter la structure du JM et le changement de conformation impliqué dans la transduction du signal reste inconnu. Pour analyser ce changement de conformation, nous avons d’abord séquentiellement substitué les neuf acides aminés du JM par une cystéine. En étudiant la capacité des mutants à former des dimères covalents de façon constitutive ou induite par l’ANP, nous avons pu évaluer la proximité relative des résidus du JM, avant et après activation du NPRA. Ces résultats ont démontré la proximité élevée de certains résidus spécifiques et sont en contradiction avec les données cristallographiques. Nous avons également démontré que le domaine intracellulaire impose une contrainte conformationnelle au JM à l’état de base, qui est levée après liaison de l’ANP. En introduisant de 1 à 5 alanines dans l’hélice-α transmembranaire, nous avons montré qu’une rotation des TM de 40° induit une activation constitutive du NPRA. Le signal d’activation pourrait donc être transmis à travers la membrane par un mécanisme de rotation des TM. En utilisant nos données expérimentales, nous avons généré le premier modèle moléculaire illustrant la conformation active du NPRA, où les domaines JM et TM sont représentés. Dans son ensemble, cette étude apporte une meilleure compréhension des mécanismes moléculaires régissant les premières étapes du processus complexe d’activation du NPRA.
Resumo:
Today it is known that severe burns can be accompanied by the phenomenon of vasoplegic syndrome (VS), which is manifested by persistent and diffuse vasodilation, hypotension and low vascular resistance, resulting in circulatory and respiratory failure. The decrease in systemic vascular resistance observed in VS is associated with excessive production of nitric oxide (NO). In the last 2 decades, studies have reported promising results from the administration of an NO competitor, methylene blue (MB), which is an inhibitor of the soluble guanylate cyclase (sGC), in the treatment of refractory cases of vasoplegia. This medical hypothesis rationale is focused on the tripod of burns/vasoplegia catecholamine resistant/methylene blue. This article has 3 main objectives: 1) to study the guanylate cyclase inhibition by MB in burns; 2) to suggest MB as a viable, safe and useful co-adjuvant therapeutic tool of fluid resuscitation, and; 3) to suggest MB as burns hypotensive vasoplegia amine-resistant treatment.
Resumo:
The polymerase chain reaction (PCR) is a versatile method to amplify specific DNA with oligonucleotide primers. By designing degenerate PCR primers based on amino acid sequences that are highly conserved among all known gene family members, new members of a multigene family can be identified. The inherent weakness of this approach is that the degenerate primers will amplify previously identified, in addition to new, family members. To specifically address this problem, we synthesized a specific RNA for each known family member so that it hybridized to one strand of the template, adjacent to the 3′-end of the primer, allowing the degenerate primer to bind yet preventing extension by DNA polymerase. To test our strategy, we used known members of the soluble, nitric oxide-sensitive guanylyl cyclase family as our templates and degenerate primers that discriminate this family from other guanylyl cyclases. We demonstrate that amplification of known members of this family is effectively and specifically inhibited by the corresponding RNAs, alone or in combination. This robust method can be adapted to any application where multiple PCR products are amplified, as long as the sequence of the desired and the undesired PCR product(s) is sufficiently distinct between the primers.
Resumo:
To investigate the dynamics of guanosine 3′,5′-cyclic monophosphate (cGMP) in single living cells, we constructed genetically encoded, fluorescent cGMP indicators by bracketing cGMP-dependent protein kinase (cGPK), minus residues 1–77, between cyan and yellow mutants of green fluorescent protein. cGMP decreased fluorescence resonance energy transfer (FRET) and increased the ratio of cyan to yellow emissions by up to 1.5-fold with apparent dissociation constants of ≈2 μM and >100:1 selectivity for cGMP over cAMP. To eliminate constitutive kinase activity, Thr516 of cGPK was mutated to Ala. Emission ratio imaging of the indicators transfected into rat fetal lung fibroblast (RFL)-6 showed cGMP transients resulting from activation of soluble and particulate guanylyl cyclase, respectively, by nitric oxide (NO) and C-type natriuretic peptide (CNP). Whereas all naive cells tested responded to CNP, only 68% responded to NO. Both sets of signals showed large and variable (0.5–4 min) latencies. The phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX) did not elevate cGMP on its own but consistently amplified responses to NO or CNP, suggesting that basal activity of guanylate cyclase is very low and emphasizing the importance of PDEs in cGMP recycling. A fraction of RFL cells showed slowly propagating tides of cGMP spreading across the cell in response to delocalized application of NO. Biolistically transfected Purkinje neurons showed cGMP responses to parallel fiber activity and NO donors, confirming that single-cell increases in cGMP occur under conditions appropriate to cause synaptic plasticity.
Resumo:
1 On rat isolated pulmonary arteries, vasorelaxation by S-nitrosocaptopril (SNOcap) was compared with S-nitrosoglutathione (GSNO) and nitroprusside, and inhibition by SNOcap of contractions to angiotensin I was compared with the angiotensin converting enzyme (ACE) inhibitor, captopril. 2 SNOcap was equipotent as a vasorelaxant on main (i.d. 2-3 mm) and intralobar (i.d. 600 mum)pulmonary arteries (pIC(50) values: 5.00 and 4.85, respectively). Vasorelaxant responses reached equilibrium rapidly (2-3 min). 3 Pulmonary vasorelaxant responses to SNOcap, like GSNO, were (i) partially inhibited by the soluble guanylate cyclase inhibitor, ODQ (1H-(1,2,4) oxadiazolo(4,3-a)-quinoxalin-1-one; 3 muM) whereas responses to nitroprusside were abolished and (ii) potentiated by hydroxocobalamin (HCOB; NO. free radical scavenger; 100 muM) whereas responses to nitroprusside were inhibited. 4 The relative potencies for pulmonary vasorelaxation compared with inhibition of platelet aggregation were: SNOcap 7: 1; GSNO 25: 1; nitroprusside > 2000:1. 5 SNOcap, like captopril, concentration-dependently and time-dependently increased the EC50 for angiotensin I but not angiotensin II. The dependence on incubation time was independent of the presence of tissue but differed for SNOcap and captopril. This difference reflected the slow dissociation of SNOcap and instability of captopril, and precluded a valid comparison of the potency of the two drugs. After prolonged incubation (greater than or equal to 5.6 h) SNOcap was more effective than captopril. 6 Thus, in pulmonary arteries SNOcap (i) possesses NO donor properties characteristic of S-nitrosothiols but different from nitroprusside and (ii) inhibits ACE at least as effectively as captopril. These properties suggest that SNOcap could be valuable in the treatment of pulmonary hypertension.
Resumo:
The entire extracellular domain of the human heat-stable enterotoxin (ST) receptor as well as a truncated N-terminal domain were cloned as glutathione S-transferase fusion proteins and expressed in Escherichia coli. The recombinant fusion proteins were purified from both the cytosol and the inclusion body fractions by selective detergent extraction followed by glutathione-agarose affinity chromatography. The purified protein, corresponding to the entire extracellular domain, bound the stable toxin peptide with an affinity comparable to that of the native receptor characterized from the human colonic T84 cell line. No binding was observed with the N-terminal truncated fragment of the receptor under similar conditions, Polyclonal antibodies were raised to the entire extracellular domain fusion protein as well as the truncated extracellular domain fusion protein, and the antibodies were purified by affinity chromatography. Addition of the purified antibodies to T84 cells inhibited ST binding and abolished ST-mediated cGMP production, indicating that critical epitopes involved in ligand interaction are present in the N-terminal fragment of the receptor, Purified antibodies recognized a single protein of M(r) 160,000 Da on Western blotting with T84 membranes, corresponding to a size of the native glycosylated receptor in T84 cells. These studies are the first report of the expression, purification, and characterization of any member of the guanylyl cyclase family of receptors in E. coli and show that binding of the toxin to the extracellular domain of the receptor is possible in the absence of any posttranslational modifications such as glycosylation. The recombinant fusion proteins as well as the antibodies that we have generated could serve as useful tools in the identification of critical residues of the extracellular domain involved in ligand interaction.
Resumo:
8 p.
Resumo:
Os mecanismos envolvidos na ação vasodilatadora da clonidina ainda não foram completamente elucidados. Investigamos os mecanismos potencialmente envolvidos utilizando o leito arterial mesentérico (LAM) isolado de rato. No LAM pré-contraído, clonidina (10-300 pmol) induz relaxamento dose-dependente, que foi significativamente inibido pela remoção do endotélio (ácido deoxicólico) e pelos inibidores do receptor α2-adrenérgico, ioimbina (1-3 μM) e rauwolscina (1 μM). A vasodilatação endotélio-dependente induzida pela clonidina foi reduzida pelo inibidor da oxido nítrico sintase (NOS), L-NAME (0.3 mM) e pelo inibidor da guanilato ciclase, ODQ (10 μM), mas não foi alterada pela indometacina (3-10 μM). Na presença do L-NAME, o efeito vasodilatador da clonidina foi adicionalmente reduzido pela solução de potássio elevado (45 mM). Os inibidores dos canais de K+ dependentes de cálcio (Kca), caribdotoxina (ChTx; 0.1 μM) e apamina (0.1 μM) também reduziram a vasodilatação induzida pela clonidina, contudo, esta resposta não foi adicionalmente inibida na presença de L-NAME, como foi observado para acetilcolina (10 pmol). Na presença do bloqueador dos canais de K+ dependentes de ATP, glibenclamida (10 μM), o efeito inibitório da associação ChTx, apamina e L-NAME foi aumentado. Em contraste, a vasodilatação induzida pela clonidina não foi afetada pelo inibidor dos canais de potássio dependentes de voltagem (Kv), 4-aminopiridina (4-AP, 1 mM). Concluindo, nossos resultados demonstram que clonidina ativa receptores α2-adrenérgicos no LAM e que a vasodilatação dependente de endotélio é mediada pela ativação da via NO-GMPc e também envolve a ativação de canais de KCa e KATP. Um fator hiperpolarizante derivado do endotélio (EDHF) também parece participar do efeito vasodilatador da clonidina.
Resumo:
蓝藻是迄今地球上发现的最古老、分布最广和最具多样性的光合自养原核生物,其细胞结构简单,具有类似于植物的光合作用,是研究光合作用及其它代谢过程重要的模式生物。由于这类生物起源于远古前寒武纪,但至今依然繁多,在极端寒冷的南北极冰湖和近于沸腾温度的温泉,以及高盐、强碱的极端环境中均有存在,它们在漫长的进化过程中如何应对灾难性环境、针对随时可能遭遇的不同胁迫环境因子形成了怎样的分子适应机制,是近年来倍受关注但仍未诠释的问题之一。由于蓝藻与高等植物叶绿体在进化上密切相关,搞清楚这类生物适应不同胁迫环境因子的分子基础及其作用机制,对从进化的角度理解光合生物与环境相互作用、通过同源性发现作物抗逆育种新靶标,有重要的理论和实践意义。 逆境应答蛋白的表达是细胞对逆境胁迫的主要适应机制之一。在特定的逆境条件下,细胞通常会表达一组蛋白质,用于识别与传递环境胁迫信号、稳定细胞内环境、消除并修复逆境造成的损伤等。因此,逆境应答蛋白的系统鉴定和功能确认,是揭示逆境条件下细胞代谢网络及抗逆性分子机制的关键。单细胞模式蓝藻基因组序列的确定,极大地推动了蓝藻细胞蛋白质组成模式研究,也为系统发掘蓝藻逆境应答蛋白、理解和揭示分子适应机制提供了新的切入点。Synechocystis 6803是第一个完成基因组测序的放氧光合模式生物。由于其具有易培养、可转化、对环境条件变化反应快等优点,以该藻种为材料所展开的逆境应答特别是盐胁迫蛋白质组研究方面已经取得了重要的进展,而对高pH胁迫的蛋白质组研究还鲜有报道。因此,本论文以Synechocystis 6803为材料,从分离纯化的亚细胞组分入手,采用蛋白质组学研究手段,对蓝藻细胞应答高pH胁迫的蛋白质代谢网络进行探讨。利用蔗糖密度离心和水溶性两相分离法相结合的方法,分别获得了对照(pH7.5)和处理(pH11)细胞的质膜、外膜和类囊体膜,并分别构建了包括可溶性蛋白和膜组分的一维和二维蛋白质凝胶电泳图谱。分析结果表明,高pH胁迫下质膜和可溶性蛋白蛋白组分的变化较外膜和类囊体膜蛋白组分更为明显。在考马斯亮兰染色胶上共发现有近110个蛋白点上调或下调表达,其中有82个蛋白点来源于质膜。对质膜蛋白进行的差异荧光标记双向电泳(2-D DIGE)分析结果与考马斯亮兰染色结果基本一致。对质膜上的82个蛋白点进行胶内消化和MALDI-TOF和MALDI-TOF/TOF质谱鉴定,得到了39个不同基因产物,其中25个是上调蛋白,14个是下调蛋白。在这些发生变化的蛋白中,近1/3是ABC型转运蛋白,如3个磷转运蛋白(Sll0679,Sll0683,Sll0684)均在高pH胁迫下明显上调。其它高pH响应蛋白包括参与光合作用(PsaF,Sll0819;CpcA,Sll1578)、呼吸作用(CoxB,Sll0813)以及细胞分裂过程的蛋白(MinD,Sll0289)。还有LexA repressor (Sll1626)和Guanylyl cyclase(Cya2,Sll0646)等起调控作用的蛋白质。此外发现8个高pH胁迫响应蛋白为功能未知的新蛋白。生物信息学预测结果显示,在已鉴定的质膜响应蛋白中有17个蛋白具有信号肽。6个蛋白为具有跨膜域的膜蛋白,其中的3个膜蛋白是首次被证明定位于质膜上,且其表达与高pH胁迫有关。这些研究结果对从分子水平理解蓝藻细胞主动应对高pH胁迫、维护细胞内pH相对稳定机制有重要启示。
Resumo:
Aims: Nodal expression of the carcinoembryonic antigen ( CEA), cytokeratin 20 ( CK20), and guanylyl cyclase C ( GCC) genes was measured in tandem in patients with colorectal cancer ( CRC) to assess whether there would be sufficient agreement between these markers in their ability to detect micrometastasis to qualify one of them as a universal marker, and whether frozen and paraffin wax embedded tissues would yield similar results.
Resumo:
In this study, we investigated whether (a) carcinoembryonic antigen (CEA), cytokeratin-20 (CK-20) and guanylyl cyclase C (GCC) are clinically useful markers for the molecular detection of submicroscopic metastases in colorectal cancer (CRC) and (b) whether overexpression of CEA, CK-20 and GCC can be reliably detected in formalin-fixed, paraffin-embedded tissues as well as frozen lymph nodes. We studied 175 frozen lymph nodes and 158 formalin-fixed, paraffin-embedded lymph nodes from 28 cases of CRC. CEA or CK-20 or GCC-specific polymerase chain reaction (PCR) was carried out on mRNA transcripts extracted from the nodal tissues. Ten out of I I Dukes' B CRC cases had detectable CEA and CK-20 while 6 out of 11 Dukes' B CRC cases had detectable GCC. In general, the difference of re-staged cases when comparing frozen and paraffin-embedded samples was marked; the only statistically significant correlation between frozen and paraffin tissue was for the CEA marker. Our results indicated a high incidence (>50%) of detecting micrometastases in histologically-negative lymph nodes at the molecular level. (C) 2003 Elsevier Science Ltd. All rights reserved.