994 resultados para soil-tool adhesion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wear resistance of rotary plows operating in a clay loam soil was studied. The degree of damage caused to the soil and the amount of mass lost by the tools were determined in order to establish correlations between the physical properties of the soil and the wear mechanisms acting on the tribosystem. Field tests were carried out in 12 plots and a randomized experimental design with 4 levels, 3 replicas per level and 2 passes per plot was applied. The levels relate to the tillage implements employed: rotary tiller, rotary power harrow, small motorized rotary tiller and control (unaltered soil). The highest mass losses were measured in rotary tiller and rotary power harrow's tools, while the small motorized rotary tiller's tools showed generally lower levels of damage. It was determined that the effective contact time between tool and soil, the rotating speed and the sudden impact forces are the most significant factors affecting the wear resistance in field operations. Thirty days after tillage operation the soil samples were taken from each plot at a mean depth of 100 mm in order to determine bulk density, gravimetric moisture content and percentage of aggregates smaller than 5 mm. No significant differences among the values of these properties were found in the experiments. The wear mechanisms acting on the tools' surface are complex and include 2-body and 3-body abrasion as well as the presence of sudden impact forces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Crop allelopathy is a potential tool for weed management but allelopathic potential often varies among cultivars and developmental stages of crop. Bioassays were conducted to appraise the allelopathic potential of herbage (incorporated at 8 g kg-1 soil) of different hexaploid wheat (Triticum aestivum) cultivars (Millat-2011, AARI-2011, Lasani-2008 and Faisalabad-2008) collected at different crop growth stages [tillering (Z-30), anthesis (Z-60) and maturity (Z-90)] against lambsquarter (Chenopodium album). Mean emergence time taken by lambsquarter was prolonged over control by anthesis and maturity stage herbage of all wheat cultivars. Final emergence percentage was dropped by 3-17% in response to different growth stages of herbage collection. Maximum suppression in shoot (45 and 78%) and root (60 and 90%) length, and seedling dry biomass (65 and 96%) of lambsquarter over control was recorded under the amendment of anthesis and maturity stages herbage of wheat cultivars. Total chlorophyll contents declined in response to herbage collected at anthesis and maturity stage of all wheat cultivars over control. Phenolic contents on the other hand were increased. Activities of enzymatic antioxidants also varied among all wheat cultivars, and declined by the incorporation of tillering, anthesis and maturity stage herbage. Wheat herbage induced lipid peroxidation in lambsquarter seedling and higher malondialdehyde content (0.56 and 0.77 nmol g-1 FW) was observed by the incorporation of wheat cultivars herbage collected at anthesis and maturity stage, respectively. Anthesis and maturity stage herbage of wheat cultivars Millat-2011, AARI-2011 and Lasani-2008 was more phytotoxic than Faisalabad-2008. Moreover, tillering stage herbage of all wheat cultivars had less inhibitory potential against emergence, seedling growth and biochemical attributes of lambsquarter. Wheat herbage amendment increased the soil pH, phenolic, organic carbon and nitrogen contents as compared to control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The forest succession after abandonment of slash-and-burn agriculture over calcareous soil in Brazilian Atlantic Forest was assessed. This is one of the world's most threatened Biome, with only 8% remaining. The study area is located over calcareous soil inside the Alto Ribeira Touristic State Park (PETAR), southeast Brazil. The phytossociological survey showed a successional pattern dominated by species of Leguminosae, especially Piptadenia gonoacantha (Mart.) J.F. Macbr. This species occurs in calcareous soils as a substitute of Tibouchina pulchra (Cham.) Cogn. (Melastomataceae) that is the most usual dominant tree species in early succession over acidic soil, which is the most common situation in this Biome. These results are important for a better understanding of Neotropical forest biodiversity and characterize a unique genetic bank in this highly endangered Biome. They are also decisive to support actions regarding rehabilitation of degraded lands and a potential tool for Neotropical forest sustainable management, both inside and around the conservation unit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interest was the seed longevity dynamics of annual ryegrass in natural conditions as an important tool to explain its dynamics in no tillage systems used in the South of Brazil. The species is commonly managed for natural re-sowing and, in this way, allows cattle grazing with reduced costs during the winter time. In February of 2003, twenty bags of nylon screen containing sterilised soil with 100 seeds in each were randomly buried in the field, 5 cm deep. Around every three or four months, four sacks were exhumed. Seeds were counted and tested using germination and tetrazolium tests.The seeds showed high primary dormancy, which was overcome very fast. After 108, 226, 326, 565 and 732 days of burial there were no significant differences as the secondary dormancy of the seeds that did not germinate in autumn was not high. The last exhumation period was significantly different from the others due to the strong decay on seed viability. As few seeds remained viable after 732 days, the soil seed bank was classified as transient, being evident that in annual pastures the transitory seed banks have a main role in the regeneration of the species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The utilization and management of arbuscular mycorrhiza (AM) symbiosis may improve production and sustainability of the cropping system. For this purpose, native AM fungi (AMF) were sought and tested for their efficiency to increase plant growth by enhanced P uptake and by alleviation of drought stress. Pot experiments with safflower (Carthamus tinctorius) and pea (Pisum sativum) in five soils (mostly sandy loamy Luvisols) and field experiments with peas were carried out during three years at four different sites. Host plants were grown in heated soils inoculated with AMF or the respective heat sterilized inoculum. In the case of peas, mutants resistant to AMF colonization were used as non-mycorrhizal controls. The mycorrhizal impact on yields and its components, transpiration, and P and N uptake was studied in several experiments, partly under varying P and N levels and water supply. Screening of native AMF by most probable number bioassays was not very meaningful. Soil monoliths were placed in the open to simulate field conditions. Inoculation with a native AMF mix improved grain yield, shoot and leaf growth variables as compared to control. Exposed to drought, higher soil water depletion of mycorrhizal plants resulted in a haying-off effect. The growth response to this inoculum could not be significantly reproduced in a subsequent open air pot experiment at two levels of irrigation and P fertilization, however, safflower grew better at higher P and water supply by multiples. The water use efficiency concerning biomass was improved by the AMF inoculum in the two experiments. Transpiration rates were not significantly affected by AM but as a tendency were higher in non-mycorrhizal safflower. A fundamental methodological problem in mycorrhiza field research is providing an appropriate (negative) control for the experimental factor arbuscular mycorrhiza. Soil sterilization or fungicide treatment have undesirable side effects in field and greenhouse settings. Furthermore, artificial rooting, temperature and light conditions in pot experiments may interfere with the interpretation of mycorrhiza effects. Therefore, the myc- pea mutant P2 was tested as a non-mycorrhizal control in a bioassay to evaluate AMF under field conditions in comparison to the symbiotic isogenetic wild type of var. FRISSON as a new integrative approach. However, mutant P2 is also of nod- phenotype and therefore unable to fix N2. A 3-factorial experiment was carried out in a climate chamber at high NPK fertilization to examine the two isolines under non-symbiotic and symbiotic conditions. P2 achieved the same (or higher) biomass as wild type both under good and poor water supply. However, inoculation with the AMF Glomus manihot did not improve plant growth. Differences of grain and straw yields in field trials were large (up to 80 per cent) between those isogenetic pea lines mainly due to higher P uptake under P and water limited conditions. The lacking N2 fixation in mutants was compensated for by high mineral N supply as indicated by the high N status of the pea mutant plants. This finding was corroborated by the results of a major field experiment at three sites with two levels of N fertilization. The higher N rate did not affect grain or straw yields of the non-fixing mutants. Very efficient AMF were detected in a Ferric Luvisol on pasture land as revealed by yield levels of the evaluation crop and by functional vital staining of highly colonized roots. Generally, levels of grain yield were low, at between 40 and 980 kg ha-1. An additional pot trial was carried out to elucidate the strong mycorrhizal effect in the Ferric Luvisol. A triplication of the plant equivalent field P fertilization was necessary to compensate for the mycorrhizal benefit which was with five times higher grain yield very similar to that found in the field experiment. However, the yield differences between the two isolines were not always plausible as the evaluation variable because they were also found in (small) field test trials with apparently sufficient P and N supply and in a soil of almost no AMF potential. This similarly occurred for pea lines of var. SPARKLE and its non-fixing mycorrhizal (E135) and non-symbiotic (R25) isomutants, which were tested in order to exclude experimentally undesirable benefits by N2 fixation. In contrast to var. FRISSON, SPARKLE was not a suitable variety for Mediterranean field conditions. This raises suspicion putative genetic defects other than symbiotic ones may be effective under field conditions, which would conflict with the concept of an appropriate control. It was concluded that AMF resistant plants may help to overcome fundamental problems of present research on arbuscular mycorrhiza, but may create new ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary: Productivity and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. For these objectives the botanical composition of the swards is of particular importance, especially, the content of legumes due to their ability to fix airborne nitrogen. As it can vary considerably within a field, a non-destructive detection method while doing other tasks would facilitate a more targeted sward management and could predict the nitrogen supply of the soil for the subsequent crop. This study was undertaken to explore the potential of digital image analysis (DIA) for a non destructive prediction of legume dry matter (DM) contribution of legume-grass mixtures. For this purpose an experiment was conducted in a greenhouse, comprising a sample size of 64 experimental swards such as pure swards of red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and lucerne (Medicago sativa L.) as well as binary mixtures of each legume with perennial ryegrass (Lolium perenne L.). Growth stages ranged from tillering to heading and the proportion of legumes from 0 to 80 %. Based on digital sward images three steps were considered in order to estimate the legume contribution (% of DM): i) The development of a digital image analysis (DIA) procedure in order to estimate legume coverage (% of area). ii) The description of the relationship between legume coverage (% area) and legume contribution (% of DM) derived from digital analysis of legume coverage related to the green area in a digital image. iii) The estimation of the legume DM contribution with the findings of i) and ii). i) In order to evaluate the most suitable approach for the estimation of legume coverage by means of DIA different tools were tested. Morphological operators such as erode and dilate support the differentiation of objects of different shape by shrinking and dilating objects (Soille, 1999). When applied to digital images of legume-grass mixtures thin grass leaves were removed whereas rounder clover leaves were left. After this process legume leaves were identified by threshold segmentation. The segmentation of greyscale images turned out to be not applicable since the segmentation between legumes and bare soil failed. The advanced procedure comprising morphological operators and HSL colour information could determine bare soil areas in young and open swards very accurately. Also legume specific HSL thresholds allowed for precise estimations of legume coverage across a wide range from 11.8 - 72.4 %. Based on this legume specific DIA procedure estimated legume coverage showed good correlations with the measured values across the whole range of sward ages (R2 0.96, SE 4.7 %). A wide range of form parameters (i.e. size, breadth, rectangularity, and circularity of areas) was tested across all sward types, but none did improve prediction accuracy of legume coverage significantly. ii) Using measured reference data of legume coverage and contribution, in a first approach a common relationship based on all three legumes and sward ages of 35, 49 and 63 days was found with R2 0.90. This relationship was improved by a legume-specific approach of only 49- and 63-d old swards (R2 0.94, 0.96 and 0.97 for red clover, white clover, and lucerne, respectively) since differing structural attributes of the legume species influence the relationship between these two parameters. In a second approach biomass was included in the model in order to allow for different structures of swards of different ages. Hence, a model was developed, providing a close look on the relationship between legume coverage in binary legume-ryegrass communities and the legume contribution: At the same level of legume coverage, legume contribution decreased with increased total biomass. This phenomenon may be caused by more non-leguminous biomass covered by legume leaves at high levels of total biomass. Additionally, values of legume contribution and coverage were transformed to the logit-scale in order to avoid problems with heteroscedasticity and negative predictions. The resulting relationships between the measured legume contribution and the calculated legume contribution indicated a high model accuracy for all legume species (R2 0.93, 0.97, 0.98 with SE 4.81, 3.22, 3.07 % of DM for red clover, white clover, and lucerne swards, respectively). The validation of the model by using digital images collected over field grown swards with biomass ranges considering the scope of the model shows, that the model is able to predict legume contribution for most common legume-grass swards (Frame, 1992; Ledgard and Steele, 1992; Loges, 1998). iii) An advanced procedure for the determination of legume DM contribution by DIA is suggested, which comprises the inclusion of morphological operators and HSL colour information in the analysis of images and which applies an advanced function to predict legume DM contribution from legume coverage by considering total sward biomass. Low residuals between measured and calculated values of legume dry matter contribution were found for the separate legume species (R2 0.90, 0.94, 0.93 with SE 5.89, 4.31, 5.52 % of DM for red clover, white clover, and lucerne swards, respectively). The introduced DIA procedure provides a rapid and precise estimation of legume DM contribution for different legume species across a wide range of sward ages. Further research is needed in order to adapt the procedure to field scale, dealing with differing light effects and potentially higher swards. The integration of total biomass into the model for determining legume contribution does not necessarily reduce its applicability in practice as a combined estimation of total biomass and legume coverage by field spectroscopy (Biewer et al. 2009) and DIA, respectively, may allow for an accurate prediction of the legume contribution in legume-grass mixtures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soil microflora is very heterogeneous in its spatial distribution. The origins of this heterogeneity and its significance for soil function are not well understood. A problem for understanding spatial variation better is the assumption of statistical stationarity that is made in most of the statistical methods used to assess it. These assumptions are made explicit in geostatistical methods that have been increasingly used by soil biologists in recent years. Geostatistical methods are powerful, particularly for local prediction, but they require the assumption that the variability of a property of interest is spatially uniform, which is not always plausible given what is known about the complexity of the soil microflora and the soil environment. We have used the wavelet transform, a relatively new innovation in mathematical analysis, to investigate the spatial variation of abundance of Azotobacter in the soil of a typical agricultural landscape. The wavelet transform entails no assumptions of stationarity and is well suited to the analysis of variables that show intermittent or transient features at different spatial scales. In this study, we computed cross-variograms of Azotobacter abundance with the pH, water content and loss on ignition of the soil. These revealed scale-dependent covariation in all cases. The wavelet transform also showed that the correlation of Azotobacter abundance with all three soil properties depended on spatial scale, the correlation generally increased with spatial scale and was only significantly different from zero at some scales. However, the wavelet analysis also allowed us to show how the correlation changed across the landscape. For example, at one scale Azotobacter abundance was strongly correlated with pH in part of the transect, and not with soil water content, but this was reversed elsewhere on the transect. The results show how scale-dependent variation of potentially limiting environmental factors can induce a complex spatial pattern of abundance in a soil organism. The geostatistical methods that we used here make assumptions that are not consistent with the spatial changes in the covariation of these properties that our wavelet analysis has shown. This suggests that the wavelet transform is a powerful tool for future investigation of the spatial structure and function of soil biota. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple formulation relating the L-band microwave brightness temperature detected by a passive microwave radiometer to the near surface soil moisture was developed using MICRO-SWEAT, a coupled microwave emission model and soil-vegetation-atmosphere-transfer (SVAT) scheme. This simple model provides an ideal tool with which to explore the impact of sub-pixel heterogeneity on the retrieval of soil moisture from microwave brightness temperatures. In the case of a bare soil pixel, the relationship between apparent emissivity and surface soil moisture is approximately linear, with the clay content of the soil influencing just the intercept of this relationship. It is shown that there are no errors in the retrieved soil moisture from a bare soil pixel that is heterogeneous in soil moisture and texture. However, in the case of a vegetated pixel, the slope of the relationship between apparent emissivity and surface soil moisture decreases with increasing vegetation. Therefore for a pixel that is heterogeneous in vegetation and soil moisture, errors can be introduced into the retrieved soil moisture. Generally, under moderate conditions, the retrieved soil moisture is within 3% of the actual soil moisture. Examples illustrating this discussion use data collected during the Southern Great Plains '97 Experiment (SGP97).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Phosphorus Indicators Tool provides a catchment-scale estimation of diffuse phosphorus (P) loss from agricultural land to surface waters using the most appropriate indicators of P loss. The Tool provides a framework that may be applied across the UK to estimate P loss, which is sensitive not only to land use and management but also to environmental factors such as climate, soil type and topography. The model complexity incorporated in the P Indicators Tool has been adapted to the level of detail in the available data and the need to reflect the impact of changes in agriculture. Currently, the Tool runs on an annual timestep and at a 1 km(2) grid scale. We demonstrate that the P Indicators Tool works in principle and that its modular structure provides a means of accounting for P loss from one layer to the next, and ultimately to receiving waters. Trial runs of the Tool suggest that modelled P delivery to water approximates measured water quality records. The transparency of the structure of the P Indicators Tool means that identification of poorly performing coefficients is possible, and further refinements of the Tool can be made to ensure it is better calibrated and subsequently validated against empirical data, as it becomes available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under the United Nations Framework Convention on Climate Change (UNFCCC), Non-Annex 1 countries such as Kenya are obliged to report green house gas (GHG) emissions from all sources where possible, including those from soils as a result of changes in land use or land management. At present, the convention encourages countries to estimate emissions using the most advanced methods possible, given the country circumstances and resources. Estimates of soil organic carbon (SOC) stocks and changes were made for Kenya using the Global Environment Facility Soil Organic Carbon (GEFSOC) Modelling System. The tool conducts analysis using three methods: (1) the Century general ecosystem model; (2) the RothC soil C decomposition model; and (3) the Intergovernmental Panel on Climate Change (IPCC) method for assessing soil C at regional scales. The required datasets included: land use history, monthly mean precipitation, monthly mean minimum and maximum temperatures for all the agro-climatic zones of Kenya and historical vegetation cover. Soil C stocks of 1.4-2.0 Pg (0-20 cm), compared well with a Soil and Terrain (SOTER) based approach that estimated similar to .8-2.0 Pg (0-30 cm). In 1990 48% of the country had SOC stocks of < 18 t C ha(-1) and 20% of the country had SOC stocks of 18-30 t C ha(-1), whereas in 2000 56% of the country had SOC stocks of < 18 t C ha(-1) and 31% of the country had SOC stocks of 18-30 t C ha(-1). Conversion of natural vegetation to annual crops led to the greatest soil C losses. Simulations suggest that soil C losses remain substantial throughout the modelling period of 1990-2030. All three methods involved in the GEFSOC System estimated that there would be a net loss of soil C between 2000 and 2030 in Kenya. The decline was more marked with RothC than with Century or the IPCC method. In non-hydric soils the SOC change rates were more pronounced in high sandy soils compared to high clay soils in most land use systems. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A controlled laboratory experiment is described, in principle and practice, which can be used for the of determination the rate of tissue decomposition in soil. By way of example, an experiment was conducted to determine the effect of temperature (12°C, 22°C) on the aerobic decomposition of skeletal muscle tissue (Organic Texel × Suffolk lamb (Ovis aries)) in a sandy loam soil. Measurements of decomposition processes included muscle tissue mass loss, microbial CO2 respiration, and muscle tissue carbon (C) and nitrogen (N). Muscle tissue mass loss at 22°C always was greater than at 12°C (p < 0.001). Microbial respiration was greater in samples incubated at 22°C for the initial 21 days of burial (p < 0.01). All buried muscle tissue samples demonstrated changes in C and N content at the end of the experiment. A significant correlation (p < 0.001) was demonstrated between the loss of muscle tissue-derived C (C1) and microbially-respired C (Cm) demonstrating CO2 respiration may be used to predict mass loss and hence biodegradation. In this experiment Q10 (12°C - 22°C) = 2.0. This method is recommended as a useful tool in determining the effect of environmental variables on the rate of decomposition of various tissues and associated materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research into the use of biochar for the remediation of contaminated soils has expanded rapidly over the past 5 yr. We review recent developments in the field and present the findings emanating from small-scale batch sorption experiments, through soil incubations and bioassays, to large-scale field experiments. We discuss the evidence that these experiments have contributed toward a mechanistic understanding of how biochar is capable of remediating soils contaminated with both organic and inorganic contaminants. The effects of biochar pyrolysis temperature, biochar source material, soil type, and contaminant type on the performance of biochars for remediation are identified. The risks associated with applying biochar to uncontaminated agricultural soils are discussed. Knowledge gaps and questions are identified which, if addressed, will considerably advance the application of biochar as a soil remediation tool in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In reforesting companies (cellulose industry), eucalyptus is usually cultivated in small plastic containers (50 mL). As seedlings remain for about 120 days in these containers-until transplantation-their roots become space restricted, with consequent limitations in water and nutrient absorption. These restrictions may lead to plant stress, decreasing productivity. In this work, we used the photoacoustic technique to evaluate the photosynthetic activity of Eucalyptus grandis, E. urophylla and E. urograndis seedlings subjected to this limited space availability, seeking a correlation with morphological parameters and fluorescence measurements in these seedlings. Photoacoustic, fluorescence, and morphological analysis were conducted every 15 days, from 45 to 120 days after sowing. Fluorescence and photosynthetic rate were evaluated in vivo and in situ, the latter one using the open photoacoustic technique. Data show that root dry matter diminished markedly at 90 and 120 days after sowing; this behavior showed a high correlation with the gas exchange component of the photoacoustic signal, as well as with the fluorescence ratio Fv/Fm. These results indicate that the soil volume of the container becomes insufficient for the roots after 90 days, probably leading to a nutritional deficiency in plants, which explains the decrease observed in the photosynthetic rate of seedlings. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From the geotechnical standpoint, it is interesting to analyse the soil texture in regions with rough terrain due to its relation with the infiltration and runoff processes and, consequently, the effect on erosion processes. The purpose of this paper is to present a methodology that provides the soil texture spatialization by using Fuzzy logic and Geostatistic. The results were correlated with maps drawn specifically for the study area. The knowledge of the spatialization of soil properties, such as the texture, can be an important tool for land use planning in order to reduce the potential soil losses during rain seasons. (c) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of Spatial Statistics 2011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to analyze variability, linear and spatial correlations of forage dry mass yield (FDM) and dry matter percentage (DM%) of Brachiaria decumbens with the bulk density (BD), gravimetric (GM) and volumetric (VM) moisture, mechanical resistance to penetration (RP) and organic matter content (OM), at depths 1 (0-0.10 m) and 2 (0.10-0.20 m), in a Red Latosol (Oxisol), in order to select an indicator of soil physical quality and identify possible causes of pasture degradation. The geostatistical grid was installed to collect soil and plant data, with 121 sampling points, over an area of 2.56 ha. The linear correlation between FDM × DM% and FDM × BD2 was low, but highly significant. Spatial correlations varied inversely and positively, respectively. Except for DM% and BD, at both depths, the other attributes showed average to high variability, indicating a heterogeneous environment. Thus, geostatistics emerges as an important tool in understanding the interactions in pasture ecosystems, in order to minimize possible causes of degradation and indicate better alternatives for soil-plant-animal management. The decrease in FDM and increased BD1 are indicators of physical degradation (compaction) of Red Latosol (Oxisol), particularly in the places with the highest concentration of animals and excessive trampling, in Cerrado conditions, in the municipality of Selvíria, Mato Grosso do Sul State, Brazil.