997 resultados para soil column
Resumo:
Through the use of the Distributed Fiber Optic Temperature Measurement (DFOT) method, it is possible to measure the temperature in small intervals (on the order of centimeters) for long distances (on the order of kilometers) with a high temporal frequency and great accuracy. The heat pulse method consists of applying a known amount of heat to the soil and monitoring the temperature evolution, which is primarily dependent on the soil moisture content. The use of both methods, which is called the active heat pulse method with fiber optic temperature sensing (AHFO), allows accurate soil moisture content measurements. In order to experimentally study the wetting patterns, i.e. shape, size, and the water distribution, from a drip irrigation emitter, a soil column of 0.5 m of diameter and 0.6 m high was built. Inside the column, a fiber optic cable with a stainless steel sheath was placed forming three concentric helixes of diameters 0.2 m, 0.4 m and 0.6 m, leading to a 148 measurement point network. Before, during, and after the irrigation event, heat pulses were performed supplying electrical power of 20 W/m to the steel. The soil moisture content was measured with a capacitive sensor in one location at depths of 0.1 m, 0.2 m, 0.3 m and 0.4 m during the irrigation. It was also determined by the gravimetric method in several locations and depths before and right after the irrigation. The emitter bulb dimensions and shape evolution was satisfactorily measured during infiltration. Furthermore, some bulb's characteristics difficult to predict (e.g. preferential flow) were detected. The results point out that the AHFO is a useful tool to estimate the wetting pattern of drip irrigation emitters in soil columns and show a high potential for its use in the field.
Resumo:
Differential SAR Interferometry (DInSAR) is a remote sensing method with the well demonstrated ability to monitor geological hazards like earthquakes, landslides and subsidence. Among all these hazards, subsidence involves the settlement of the ground surface affecting wide areas. Frequently, subsidence is induced by overexploitation of aquifers and constitutes a common problem that affects developed societies. The excessive pumping of underground water decreases the piezometric level in the subsoil and, as a consequence, increases the effective stresses with depth causing a consolidation of the soil column. This consolidation originates a settlement of ground surface that must be withstood by civil structures built on these areas. In this paper we make use of an advanced DInSAR approach - the Coherent Pixels Technique (CPT) [1] - to monitor subsidence induced by aquifer overexploitation in the Vega Media of the Segura River (SE Spain) from 1993 to the present. 28 ERS-1/2 scenes covering a time interval of about 10 years were used to study this phenomenon. The deformation map retrieved with CPT technique shows settlements of up to 80 mm at some points of the studied zone. These values agree with data obtained by means of borehole extensometers, but not with the distribution of damaged buildings, well points and basements, because the occurrence of damages also depends on the structural quality of the buildings and their foundations. The most interesting relationship observed is the one existing between piezometric changes, settlement evolution and local geology. Three main patterns of ground surface and piezometric level behaviour have been distinguished for the study zone during this period: 1) areas where deformation occurs while ground conditions remain altered (recent deformable sediments), 2) areas with no deformation (old and non-deformable materials), and 3) areas where ground deformation mimics piezometric level changes (expansive soils). The temporal relationship between deformation patterns and soil characteristics has been analysed in this work, showing a delay between them. Moreover, this technique has allowed the measurement of ground subsidence for a period (1993-1995) where no instrument information was available.
Resumo:
Nitrate (NO3) accumulations (up to 1880 kg NO3-N/ha for a 12-m profile) in the soils of the Johnstone River catchment (JRC) may pose a serious environmental threat to the Great Barrier Reef lagoon if the NO3 were released. The: leaching of artificial rainwater through repacked soil columns was investigated to determine the effect of low NO3/low ionic strength inputs on the NO3 Chemistry of the JRC profiles. Repacked soil columns were used to simulate the 11.5-m profiles, and the soil solution anion and cation concentrations were monitored at 10 points throughout the soil column. As the rainwater was applied, NO3 leached down the profile, with substantial quantities exiting the columns. Anion exchange was discounted as the major mechanism of NO3 release due to the substantial net loss of anions from the system (up to 2740 kg NO3-N/ha over the experimental period). As the soils were dominated by variable charge minerals, the effect of changing pH and ionic strength on the surface charge density was investigated in relation to the release of NO3 from the exchange. It was concluded that the equilibration of the soil solution with the low ionic strength rainwater solution resulted in a lessening of both the positive and negative surface charge. Nitrate was released into the soil solution and subsequently leached due to the lessening of the positive surface charge. Loss of NO3 from the soil profile was slow, with equivalent field release times estimated to be tens of years. Although annual release rates were high in absolute terms (up to 175 kg NO3-N/ha.year), they are only slightly greater than the current loss rates from fertilised sugarcane production (up to 50 kg NO3-N/ha.year). In addition to this, the large-scale release of NO3 from the accumulations will only occur until a new equilibrium is established with the input rainwater solution.
Resumo:
A column method was developed to conveniently and reliably determine the soil organic partition coefficients (K-oc) of three insecticides (methiocarb, azinphos-methyl, fenthion), four fungicides (triadimenol, fuberidazole, tebuconazole, pencycuron), and one herbicide (atrazine), in which real soil acted as a stationary phase and the water solution of pesticide as an eluent. The processes of sorption equilibrium were directly shown through a breakthrough curve(BTC). The log K-oc values are 1.69, 1.95, 2.25, 2.55, 2.69, 2.67, 3.10, and 3.33 for atrazine, triadimenol, methiocarb, fuberidazole, azinphos-methyl, tebuconazole, fenthion and pencycuron, respectively.
Resumo:
A pre-column derivatization method for the sensitive determination of aliphatic amines using the labeling reagent 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by HPLC with fluorescence detection and APCI/NIS identification in positive-ion mode has been developed. The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by the 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent, BCEOC, that could easily and quickly label amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M + H](+) with APCI/MS in positive-ion mode. The collision induced dissociation of the protonated molecular ion formed characteristic fragment ions at m/z 264.1, m/z 246.0 and m/z 218.1, corresponding to the cleavages of CH2CH2O-CO, CH2CH2-OCO, and N-CH2CH2O bonds. Studies on derivatization conditions demonstrated that excellent derivatization yields close to 100% were observed with a 3 to 4-fold molar reagent excess in acetonitrile solvent, in the presence of borate buffer (pH 9.0) at 40 degrees C for 10 min. In addition, the detection responses for BCEOC derivatives were compared with those obtained with CEOC and FMOC as labeling reagents. The ratios I-BCEOC/I-CEOC and I-BCEOC/I-FMOC were, respectively, 1.40-2.76 and 1.36-2.92 for fluorescence responses (here, I was the relative fluorescence intensity). Separation of the amine derivatives had been optimized on an Eclipse XDB-C-8 column. Detection limits calculated from an 0.10 pmol injection, at a signal-to-noise ratio of 3, were 18.65-38.82 fmol (injection volume 10 mu L for fluorescence detection. The relative standard deviations for intraday determination (n = 6) of standard amine derivatives (50 pmol) were 0.0063-0.037% for retention times and 3.36-6.93% for peak areas. The mean intra-and inter-assay precision for all amines were <5.4% and 5.8%, respectively. The recoveries of amines ranged from 96 to 113%. Excellent linear responses were observed with correlation coefficients of >0.9994. The established method provided a simple and highly sensitive technique for the quantitative analysis of trace amounts of aliphatic amines from biological and natural environmental samples.
Resumo:
To study the transport mechanism of hydrophobic organic chemicals (HOCs) and the energy change in soil/solvent system, a soil leaching column chromatographic (SLCC) experiment at an environmental temperature range of 20-40 degreesC was carried out, which utilized a reference soil (SP 14696) packed column and a methanol-water (1:4 by volume ratio) eluent. The transport process quickens with the increase of column temperature. The ratio of retention factors at 30 and 40 degreesC (k'(30)/k'(40)) ranged from 1.08 to 1.36. The lower enthalpy change of the solute transfer in SLCC (from eluent to soil) than in conventional reversed-phase liquid chromatography (e.g., from eluent to C-18) is consistent with the hypothesis that HOCs were dominantly and physically partitioned between solvent and soil. The results were also verified by the linear solvation energy relationships analysis. The chief factor controlling the retention was found to be the solute solvophobic partition, and the second important factor was the solute hydrogen-bond basicity, while the least important factors were the solute polarizability-dipolarity and hydrogen-bond acidity. With the increase of temperature, the contributions of the solute solvophobic partition and hydrogen-bond basicity gradually decrease, and the latter decreases faster than the former. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A column method was developed to conveniently and reliably determine the soil organic partition coefficients (K-oc) of three insecticides (methiocarb, azinphos-methyl, fenthion), four fungicides (triadimenol, fuberidazole, tebuconazole, pencycuron), and one herbicide (atrazine), in which real soil acted as a stationary phase and the water solution of pesticide as an eluent. The processes of sorption equilibrium were directly shown through a breakthrough curve(BTC). The log K-oc values are 1.69, 1.95, 2.25, 2.55, 2.69, 2.67, 3.10, and 3.33 for atrazine, triadimenol, methiocarb, fuberidazole, azinphos-methyl, tebuconazole, fenthion and pencycuron, respectively.
Resumo:
The aim of this study is to test the stabilisation of metals in contaminated soils via the formation of low-solubility metal phosphates. Bone apatite, in the form of commercially available bone meal, was tested as a phosphate source on a mine waste contaminated made-ground with high levels of Pb, Zn and Cd. Triplicate leaching columns were set up at bone meal to soil ratios of 1:25 and 1:10, in addition to unamended controls, and were run for 18 months. The columns were irrigated daily with a synthetic rain solution at pH of 2, 3, and 4.4. After 100 days, the leachate Pb, Zn and Cd concentrations of all amended columns were significantly reduced. For 1:10 treatments, release of these metals was suppressed throughout the trial. For 1:25 treatments, Zn and Cd concentrations in the leachates began to increase after 300 days. DTPA and water extractions showed that Pb and Cd were more strongly held in the amended soils. This study concludes that the complexity of soil processes and the small quantities of metals sequestered precluded determination of a metal immobilisation mechanism. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A method for the determination of imidacloprid in paddy water and soil was developed using liquid chromatography electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS). Separation of imidacloprid was carried out on a Shimadzu C18 column (150 mm × 4.6 mm, 4.6 μm) with an acetonitrile?water (50 : 50, v/v) mobile phase containing 0.1% of acetic acid. The flow rate was 0.3 mL/min in isocratic mode. The product ion at 209 m/z was selected for quantification in multiple-reaction monitoring scan mode. Imidacloprid residues in soil were extracted by a solid-liquid extraction method with acetonitrile. Water samples were filtered and directly injected for analysis without extraction. Detection limits of 0.5 μg/kg and 0.3 μg/L were achieved for soil and water samples, respectively. The method had recoveries of 90 ± 2% (n = 4) for soil samples and 100 ± 2% (n = 4) for water samples. A linear relationship was observed throughout the investigated range of concentrations (1-200 μg/L), with the correlation coefficients ranging from 0.999 to 1.000. © Pleiades Publishing, Ltd., 2010.
Resumo:
Groundwater tables are rising beneath irrigated fields in some areas of the Lower Burdekin in North Queensland, Australia. The soils where this occurs are predominantly sodic clay soils with low hydraulic conductivities. Many of these soils have been treated by applying gypsum or by increasing the salinity of irrigation water by mixing saline groundwater with fresh river water. While the purpose of these treatments is to increase infiltration into the surface soils and improve productivity of the root zone, it is thought that the treatments may have altered the soil hydraulic properties well below the root zone leading to increased groundwater recharge and rising water tables. In this paper we discuss the use of column experiments and HYDRUS modelling, with major ion reaction and transport and soil water chemistry-dependent hydraulic conductivity, to assess the likely depth, magnitude and timing of the impacts of surface soil amelioration on soil hydraulic properties below the root zone and hence groundwater recharge. In the experiments, columns of sodic clays from the Lower Burdekin were leached for extended periods of time with either gypsum solutions or mixed cation salt solutions and change s in hydraulic conductivity were measured. Leaching with a gypsum solution for an extended time period, until the flow rate stabilised, resulted in an approximately twenty fold increase in the hydraulic conductivity when compared with a low salinity, mixed cation solution. HYDRUS modelling was used to high light the role of those factors which might influence the impacts of soil treatment, particularly at depth, including the large amounts of rain during the relatively short wet season and the presence of thick low permeability clay layers.
Resumo:
Seismic structural design is essentially the estimation of structural response to a forced motion, which may be deterministic or stochastic, imposed on the ground. The assumption that the same ground motion acts at every point of the base of the structure (or at every support) is not always justifiable; particularly in case of very large structures when considerable spatial variability in ground motion can exist over significant distances example long span bridges. This variability is partly due to the delay in arrival of the excitation at different supports (which is called the wave passage effect) and due to heterogeneity in the ground medium which results in incoherency and local effects. The current study examines the influence of the wave passage effect (in terms of delay in arrival of horizontal ground excitation at different supports and neglecting transmission through the structure) on the response of a few open-plane frame building structures with soil-structure interaction. The ground acceleration has been modeled by a suitably filtered white noise. As a special case, the ground excitation at different supports has also been treated as statistically independent to model the extreme case of incoherence due to local effects and due to modifications to the ground motion resulting from wave reflections and refractions in heterogeneous soil media. The results indicate that, even for relatively short spanned building frames, wave passage effect can be significant. In the absence of soil-structure interaction, it can significantly increase the root mean square (rms) value of the shear in extreme end columns for the stiffer frames but has negligible effect on the flexible frames when total displacements are considered. It is seen that pseudo-static displacements increasingly contribute to the rms value of column shear as the time delay increases both for the stiffer and for the more flexible frames. When soil-structure interaction is considered, wave passage effect (in terms of total displacements) is significant only for low soil shear modulus, G. values (where soil-structure interaction significantly lowers the fundamental frequency) and for stiff frames. The contribution of pseudo-static displacement to these rms values is found to decrease with increase in G. In general, wave passage effect for most interactive frames is insignificant compared to the attenuating effect a decrease in G, has on the response of the interactive structure to uniform support excitation. When the excitations at different supports are statistically independent, it is seen that for both the stiff and flexible frames, the rms value of the column shear in extreme end columns is several times larger (more for the stiffer frames) than the value corresponding to uniform base excitation with the pseudo-static displacements contributing over 99% of the rms value of column shear. Soil-structure interaction has an attenuating effect on the rms value of the column shear, the effect decreasing with increase in G,. Here too, the pseudo-static displacements contribute very largely to the column shear. The influence of the wave passage effect on the response of three 2-bay frames with and without soil-structure interaction to a recorded horizontal accelerogram is also examined. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The dynamic properties of dry Leighton Buzzard sand have been investigated using a resonant column test apparatus. These data are compared with very low frequency cyclic tests on identical specimens of sand. The comparison indicates that the properties of dry sand are independent of frequency. A simple one-dimensional model of kinematic hardening plasticity is used to predict the dynamic behaviour of the sand. The input parameters for this model are based on the results of static tests. These may be conducted on standard laboratory equipment with only minor modifications. The predictions are in good agreement with the measured data.