948 resultados para software testing


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de natureza científica para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aspect-oriented programming (AOP) is a promising technology that supports separation of crosscutting concerns (i.e., functionality that tends to be tangled with, and scattered through the rest of the system). In AOP, a method-like construct named advice is applied to join points in the system through a special construct named pointcut. This mechanism supports the modularization of crosscutting behavior; however, since the added interactions are not explicit in the source code, it is hard to ensure their correctness. To tackle this problem, this paper presents a rigorous coverage analysis approach to ensure exercising the logic of each advice - statements, branches, and def-use pairs - at each affected join point. To make this analysis possible, a structural model based on Java bytecode - called PointCut-based Del-Use Graph (PCDU) - is proposed, along with three integration testing criteria. Theoretical, empirical, and exploratory studies involving 12 aspect-oriented programs and several fault examples present evidence of the feasibility and effectiveness of the proposed approach. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we consider a classical problem of complete test generation for deterministic finite-state machines (FSMs) in a more general setting. The first generalization is that the number of states in implementation FSMs can even be smaller than that of the specification FSM. Previous work deals only with the case when the implementation FSMs are allowed to have the same number of states as the specification FSM. This generalization provides more options to the test designer: when traditional methods trigger a test explosion for large specification machines, tests with a lower, but yet guaranteed, fault coverage can still be generated. The second generalization is that tests can be generated starting with a user-defined test suite, by incrementally extending it until the desired fault coverage is achieved. Solving the generalized test derivation problem, we formulate sufficient conditions for test suite completeness weaker than the existing ones and use them to elaborate an algorithm that can be used both for extending user-defined test suites to achieve the desired fault coverage and for test generation. We present the experimental results that indicate that the proposed algorithm allows obtaining a trade-off between the length and fault coverage of test suites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutation testing has been used to assess the quality of test case suites by analyzing the ability in distinguishing the artifact under testing from a set of alternative artifacts, the so-called mutants. The mutants are generated from the artifact under testing by applying a set of mutant operators, which produce artifacts with simple syntactical differences. The mutant operators are usually based on typical errors that occur during the software development and can be related to a fault model. In this paper, we propose a language-named MuDeL (MUtant DEfinition Language)-for the definition of mutant operators, aiming not only at automating the mutant generation, but also at providing precision and formality to the operator definition. The proposed language is based on concepts from transformational and logical programming paradigms, as well as from context-free grammar theory. Denotational semantics formal framework is employed to define the semantics of the MuDeL language. We also describe a system-named mudelgen-developed to support the use of this language. An executable representation of the denotational semantics of the language is used to check the correctness of the implementation of mudelgen. At the very end, a mutant generator module is produced, which can be incorporated into a specific mutant tool/environment. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Formal methods and software testing are tools to obtain and control software quality. When used together, they provide mechanisms for software specification, verification and error detection. Even though formal methods allow software to be mathematically verified, they are not enough to assure that a system is free of faults, thus, software testing techniques are necessary to complement the process of verification and validation of a system. Model Based Testing techniques allow tests to be generated from other software artifacts such as specifications and abstract models. Using formal specifications as basis for test creation, we can generate better quality tests, because these specifications are usually precise and free of ambiguity. Fernanda Souza (2009) proposed a method to define test cases from B Method specifications. This method used information from the machine s invariant and the operation s precondition to define positive and negative test cases for an operation, using equivalent class partitioning and boundary value analysis based techniques. However, the method proposed in 2009 was not automated and had conceptual deficiencies like, for instance, it did not fit in a well defined coverage criteria classification. We started our work with a case study that applied the method in an example of B specification from the industry. Based in this case study we ve obtained subsidies to improve it. In our work we evolved the proposed method, rewriting it and adding characteristics to make it compatible with a test classification used by the community. We also improved the method to support specifications structured in different components, to use information from the operation s behavior on the test case generation process and to use new coverage criterias. Besides, we have implemented a tool to automate the method and we have submitted it to more complex case studies

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Checking the conformity between implementation and design rules in a system is an important activity to try to ensure that no degradation occurs between architectural patterns defined for the system and what is actually implemented in the source code. Especially in the case of systems which require a high level of reliability is important to define specific design rules for exceptional behavior. Such rules describe how exceptions should flow through the system by defining what elements are responsible for catching exceptions thrown by other system elements. However, current approaches to automatically check design rules do not provide suitable mechanisms to define and verify design rules related to the exception handling policy of applications. This paper proposes a practical approach to preserve the exceptional behavior of an application or family of applications, based on the definition and runtime automatic checking of design rules for exception handling of systems developed in Java or AspectJ. To support this approach was developed, in the context of this work, a tool called VITTAE (Verification and Information Tool to Analyze Exceptions) that extends the JUnit framework and allows automating test activities to exceptional design rules. We conducted a case study with the primary objective of evaluating the effectiveness of the proposed approach on a software product line. Besides this, an experiment was conducted that aimed to realize a comparative analysis between the proposed approach and an approach based on a tool called JUnitE, which also proposes to test the exception handling code using JUnit tests. The results showed how the exception handling design rules evolve along different versions of a system and that VITTAE can aid in the detection of defects in exception handling code

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a growing interest of the Computer Science education community for including testing concepts on introductory programming courses. Aiming at contributing to this issue, we introduce POPT, a Problem-Oriented Programming and Testing approach for Introductory Programming Courses. POPT main goal is to improve the traditional method of teaching introductory programming that concentrates mainly on implementation and neglects testing. POPT extends POP (Problem Oriented Programing) methodology proposed on the PhD Thesis of Andrea Mendonça (UFCG). In both methodologies POPT and POP, students skills in dealing with ill-defined problems must be developed since the first programming courses. In POPT however, students are stimulated to clarify ill-defined problem specifications, guided by de definition of test cases (in a table-like manner). This paper presents POPT, and TestBoot a tool developed to support the methodology. In order to evaluate the approach a case study and a controlled experiment (which adopted the Latin Square design) were performed. In an Introductory Programming course of Computer Science and Software Engineering Graduation Programs at the Federal University of Rio Grande do Norte, Brazil. The study results have shown that, when compared to a Blind Testing approach, POPT stimulates the implementation of programs of better external quality the first program version submitted by POPT students passed in twice the number of test cases (professor-defined ones) when compared to non-POPT students. Moreover, POPT students submitted fewer program versions and spent more time to submit the first version to the automatic evaluation system, which lead us to think that POPT students are stimulated to think better about the solution they are implementing. The controlled experiment confirmed the influence of the proposed methodology on the quality of the code developed by POPT students

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work proposed by Cleverton Hentz (2010) presented an approach to define tests from the formal description of a program s input. Since some programs, such as compilers, may have their inputs formalized through grammars, it is common to use context-free grammars to specify the set of its valid entries. In the original work the author developed a tool that automatically generates tests for compilers. In the present work we identify types of problems in various areas where grammars are used to describe them , for example, to specify software configurations, which are potential situations to use LGen. In addition, we conducted case studies with grammars of different domains and from these studies it was possible to evaluate the behavior and performance of LGen during the generation of sentences, evaluating aspects such as execution time, number of generated sentences and satisfaction of coverage criteria available in LGen

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hardness is a property largely used in material specifications, mechanical and metallurgical research and quality control of several materials. Specifically for timber, Janka hardness is a simple, quick and easy test, with good correlations with the compression parallel to grain strength, a strong reference in structural classification for this material. More recently, international studies have reported the use of Brinell hardness for timber assessment which resumes the advantages previously mentioned for Janka hardness and make it easier to be performed in the field, especially because of the lower magnitude of the involved loads. A first generation of an equipment for field evaluation of hardness in wood - Portable Hardness tester for wood - based on Brinell hardness has already been developed by the Research Group on Forest Products from FCA/UNESP, Brazil, with very good correlations between the evaluated hardness and several other mechanical properties of the material when performing tests with different species of native and reforested wood (traditionally used as ties - sleepers - in railways). This paper presents results obtained in the experimental program with the first generation of this equipment and preliminary tests with its second generation, which uses accelerometers to substitute the indentation measurements in wood. For the first generation of the equipment functional and calibration tests were carried out using 16 native and reforestation timber lots, among there E. citriodora, E. tereticornis, E. saligna, E. urophylla, E. grandis, Goupia glabra and Bagassa guianenses, with different origins and ages. The results obtained confirm its potential in the classification of specimens, with inclusion errors varying from 4.5% to 16.6%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A suit able decision-making on managing a contaminated site characterization program is strongly dependent of the diagnosis process. A detailed diagnosis can be done based on a Conceptual Site Model (CSM) elaboration using high resolution site characterization tools. The piezocone (CPTu) test is a high resolution tool which allows attaching several specific sensors, like the resistivity probe. This hybrid device is called the resistivity piezocone (RCPTu). A simulated geo-environmental site characterization program was performed on an erosion site using different tools (direct push tools soil samplers, hollow stem auger (HSA) drilling and RCPTu tests) to develop the CSM for a site similar to the Brazilian conditions. It was observed a good agreement between the site profiles interpreted by the different methods. The resistivity sensor attached to the piezocone improved the interpretation and the decision-making process on site was significantly better for the CSM elaboration. The RCPTu test data also allowed identifying the hydrogeological heterogeneities. The present study shows that the RCPTu test is also a useful and powerful tool to development an accurate CSM in a Brazilian condition, especially in an approach that prioritizes high resolution geo-environmental investigation. © 2013 Taylor & Francis Group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A long-standing problem when testing from a deterministic finite state machine is to guarantee full fault coverage even if the faults introduce extra states in the implementations. It is well known that such tests should include the sequences in a traversal set which contains all input sequences of length defined by the number of extra states. This paper suggests the SPY method, which helps reduce the length of tests by distributing sequences of the traversal set and reducing test branching. It is also demonstrated that an additional assumption about the implementation under test relaxes the requirement of the complete traversal set. The results of the experimental comparison of the proposed method with an existing method indicate that the resulting reduction can reach 40%. Experimental results suggest that the additional assumption about the implementation can help in further reducing the test suite length. Copyright (C) 2011 John Wiley & Sons, Ltd.