948 resultados para soft computing methods
Resumo:
The modern GPUs are well suited for intensive computational tasks and massive parallel computation. Sparse matrix multiplication and linear triangular solver are the most important and heavily used kernels in scientific computation, and several challenges in developing a high performance kernel with the two modules is investigated. The main interest it to solve linear systems derived from the elliptic equations with triangular elements. The resulting linear system has a symmetric positive definite matrix. The sparse matrix is stored in the compressed sparse row (CSR) format. It is proposed a CUDA algorithm to execute the matrix vector multiplication using directly the CSR format. A dependence tree algorithm is used to determine which variables the linear triangular solver can determine in parallel. To increase the number of the parallel threads, a coloring graph algorithm is implemented to reorder the mesh numbering in a pre-processing phase. The proposed method is compared with parallel and serial available libraries. The results show that the proposed method improves the computation cost of the matrix vector multiplication. The pre-processing associated with the triangular solver needs to be executed just once in the proposed method. The conjugate gradient method was implemented and showed similar convergence rate for all the compared methods. The proposed method showed significant smaller execution time.
Resumo:
Many macroscopic properties: hardness, corrosion, catalytic activity, etc. are directly related to the surface structure, that is, to the position and chemical identity of the outermost atoms of the material. Current experimental techniques for its determination produce a “signature” from which the structure must be inferred by solving an inverse problem: a solution is proposed, its corresponding signature computed and then compared to the experiment. This is a challenging optimization problem where the search space and the number of local minima grows exponentially with the number of atoms, hence its solution cannot be achieved for arbitrarily large structures. Nowadays, it is solved by using a mixture of human knowledge and local search techniques: an expert proposes a solution that is refined using a local minimizer. If the outcome does not fit the experiment, a new solution must be proposed again. Solving a small surface can take from days to weeks of this trial and error method. Here we describe our ongoing work in its solution. We use an hybrid algorithm that mixes evolutionary techniques with trusted region methods and reuses knowledge gained during the execution to avoid repeated search of structures. Its parallelization produces good results even when not requiring the gathering of the full population, hence it can be used in loosely coupled environments such as grids. With this algorithm, the solution of test cases that previously took weeks of expert time can be automatically solved in a day or two of uniprocessor time.
Resumo:
The development of applications as well as the services for mobile systems faces a varied range of devices with very heterogeneous capabilities whose response times are difficult to predict. The research described in this work aims to respond to this issue by developing a computational model that formalizes the problem and that defines adjusting computing methods. The described proposal combines imprecise computing strategies with cloud computing paradigms in order to provide flexible implementation frameworks for embedded or mobile devices. As a result, the imprecise computation scheduling method on the workload of the embedded system is the solution to move computing to the cloud according to the priority and response time of the tasks to be executed and hereby be able to meet productivity and quality of desired services. A technique to estimate network delays and to schedule more accurately tasks is illustrated in this paper. An application example in which this technique is experimented in running contexts with heterogeneous work loading for checking the validity of the proposed model is described.
Resumo:
Plane model extraction from three-dimensional point clouds is a necessary step in many different applications such as planar object reconstruction, indoor mapping and indoor localization. Different RANdom SAmple Consensus (RANSAC)-based methods have been proposed for this purpose in recent years. In this study, we propose a novel method-based on RANSAC called Multiplane Model Estimation, which can estimate multiple plane models simultaneously from a noisy point cloud using the knowledge extracted from a scene (or an object) in order to reconstruct it accurately. This method comprises two steps: first, it clusters the data into planar faces that preserve some constraints defined by knowledge related to the object (e.g., the angles between faces); and second, the models of the planes are estimated based on these data using a novel multi-constraint RANSAC. We performed experiments in the clustering and RANSAC stages, which showed that the proposed method performed better than state-of-the-art methods.
Resumo:
In this work, we propose the use of the neural gas (NG), a neural network that uses an unsupervised Competitive Hebbian Learning (CHL) rule, to develop a reverse engineering process. This is a simple and accurate method to reconstruct objects from point clouds obtained from multiple overlapping views using low-cost sensors. In contrast to other methods that may need several stages that include downsampling, noise filtering and many other tasks, the NG automatically obtains the 3D model of the scanned objects. To demonstrate the validity of our proposal we tested our method with several models and performed a study of the neural network parameterization computing the quality of representation and also comparing results with other neural methods like growing neural gas and Kohonen maps or classical methods like Voxel Grid. We also reconstructed models acquired by low cost sensors that can be used in virtual and augmented reality environments for redesign or manipulation purposes. Since the NG algorithm has a strong computational cost we propose its acceleration. We have redesigned and implemented the NG learning algorithm to fit it onto Graphics Processing Units using CUDA. A speed-up of 180× faster is obtained compared to the sequential CPU version.
Resumo:
Data envelopment analysis (DEA) is a methodology for measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. Crisp input and output data are fundamentally indispensable in conventional DEA. However, the observed values of the input and output data in real-world problems are sometimes imprecise or vague. Many researchers have proposed various fuzzy methods for dealing with the imprecise and ambiguous data in DEA. This chapter provides a taxonomy and review of the fuzzy DEA (FDEA) methods. We present a classification scheme with six categories, namely, the tolerance approach, the α-level based approach, the fuzzy ranking approach, the possibility approach, the fuzzy arithmetic, and the fuzzy random/type-2 fuzzy set. We discuss each classification scheme and group the FDEA papers published in the literature over the past 30 years. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
Dissertação de dout. em Electrónica e Computação, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2004
Resumo:
Las organizaciones y sus entornos son sistemas complejos. Tales sistemas son difíciles de comprender y predecir. Pese a ello, la predicción es una tarea fundamental para la gestión empresarial y para la toma de decisiones que implica siempre un riesgo. Los métodos clásicos de predicción (entre los cuales están: la regresión lineal, la Autoregresive Moving Average y el exponential smoothing) establecen supuestos como la linealidad, la estabilidad para ser matemática y computacionalmente tratables. Por diferentes medios, sin embargo, se han demostrado las limitaciones de tales métodos. Pues bien, en las últimas décadas nuevos métodos de predicción han surgido con el fin de abarcar la complejidad de los sistemas organizacionales y sus entornos, antes que evitarla. Entre ellos, los más promisorios son los métodos de predicción bio-inspirados (ej. redes neuronales, algoritmos genéticos /evolutivos y sistemas inmunes artificiales). Este artículo pretende establecer un estado situacional de las aplicaciones actuales y potenciales de los métodos bio-inspirados de predicción en la administración.
Resumo:
In this paper, artificial neural networks are employed in a novel approach to identify harmonic components of single-phase nonlinear load currents, whose amplitude and phase angle are subject to unpredictable changes, even in steady-state. The first six harmonic current components are identified through the variation analysis of waveform characteristics. The effectiveness of this method is tested by applying it to the model of a single-phase active power filter, dedicated to the selective compensation of harmonic current drained by an AC controller. Simulation and experimental results are presented to validate the proposed approach. (C) 2010 Elsevier B. V. All rights reserved.
Resumo:
The crossflow filtration process differs of the conventional filtration by presenting the circulation flow tangentially to the filtration surface. The conventional mathematical models used to represent the process have some limitations in relation to the identification and generalization of the system behaviour. In this paper, a system based on artificial neural networks is developed to overcome the problems usually found in the conventional mathematical models. More specifically, the developed system uses an artificial neural network that simulates the behaviour of the crossflow filtration process in a robust way. Imprecisions and uncertainties associated with the measurements made on the system are automatically incorporated in the neural approach. Simulation results are presented to justify the validity of the proposed approach. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Voltage and current waveforms of a distribution or transmission power system are not pure sinusoids. There are distortions in these waveforms that can be represented as a combination of the fundamental frequency, harmonics and high frequency transients. This paper presents a novel approach to identifying harmonics in power system distorted waveforms. The proposed method is based on Genetic Algorithms, which is an optimization technique inspired by genetics and natural evolution. GOOAL, a specially designed intelligent algorithm for optimization problems, was successfully implemented and tested. Two kinds of representations concerning chromosomes are utilized: binary and real. The results show that the proposed method is more precise than the traditional Fourier Transform, especially considering the real representation of the chromosomes.
Resumo:
This paper proposes the use of the q-Gaussian mutation with self-adaptation of the shape of the mutation distribution in evolutionary algorithms. The shape of the q-Gaussian mutation distribution is controlled by a real parameter q. In the proposed method, the real parameter q of the q-Gaussian mutation is encoded in the chromosome of individuals and hence is allowed to evolve during the evolutionary process. In order to test the new mutation operator, evolution strategy and evolutionary programming algorithms with self-adapted q-Gaussian mutation generated from anisotropic and isotropic distributions are presented. The theoretical analysis of the q-Gaussian mutation is also provided. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutations in the optimization of a set of test functions. Experimental results show the efficiency of the proposed method of self-adapting the mutation distribution in evolutionary algorithms.
Resumo:
Purpose: To evaluate the effect of light guide distance and the different photoactivation methods on the degree of conversion (DC) and microleakage of a composite. Methods and Materials: Three photoactivation protocols (600mW/cm(2) x 40 seconds; 400 mW/cm(2) x 60 seconds or 200 mW/cm(2) x 20 seconds, followed by 500 mW/cm(2) X 40 seconds) and three distances from the light source (0, 3 or 7 mm) were tested. Cylindrical specimens (5 nun diameter; 2 mm tall; n=3) were prepared for the DC test (FT-Raman). Class V cavities were made in 90 bovine incisors to conduct the microleakage test. The specimens were conditioned for 15 seconds with phosphoric acid (37%), followed by application of the adhesive system Prime & Bond NT (Dentsply/Caulk). The preparations were restored in bulk. The specimens were stored for 24 hours in distilled water (37 degrees C) before being submitted to the silvernitrate microleakage protocol. The restorations were sectioned and analyzed under 25x magnification. Results: Statistical analyses (two-way ANOVAs and Tukey test, alpha=0.05) found significance only for the factor distance (p=0.015) at the top of the composite for the DC test. Conversion was statistically lower for the 7 mm groups compared to the 0 and 3 mm groups, which were equivalent to each other. At the bottom of the specimens, none of the factors or interactions was significant (p<0.05). The Kruskal-Wallis test showed that, in general, the soft-start method led to lower microleakage scores when compared to the continuous modes, mainly when associated with a distancing of 7 mm (p<0.01). With the exception of specimens irradiated with 400mW/cm(2) that did not demonstrate variations on scores for the distances tested, higher microleakage was observed for shorter distances from the light source. Conclusions: Soft-start methods may reduce microleakage when the light guide distancing provides a low level of irradiance, which also causes a discrete reduction in the DC.
Resumo:
Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.