94 resultados para snowmelt


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bulk paleosol samples collected from a Middle to Early Miocene moraine in the New Mountain area of the Dry Valleys, Antarctica, yielded Coleoptera exoskeletons and occasional endoskeletons showing considerable diagenetic effects along with several species of bacteria, all lodged in a dry-frozen but salt-rich horizon at shallow depth to the land surface. The till is at the older end of a chronologic sequence of glacial deposits, thought to have been deposited before the transition from wet-based to cold-based ice (similar to 15 Ma), and hence, entirely weathered in contact with the subaerial atmosphere. It is possible, though not absolutely verifiable, that the skeletons date from this early stage of emplacement having undergone modifications whenever light snowmelt occurred or salt concentrations lowered the freezing temperature to maintain water as liquid. Correlation of the Coleoptera species with cultured bacteria in the sample and the likelihood of co-habitation with Beauveria bassiani found in two adjacent, although younger paleosols, leads to new questions about the antiquity of the Coleoptera and the source of N and glucose from chitinase derived from the insects. The skeletons in the 831 section may date close to the oldest preserved chitin (Oligocene) yet found on Earth. While harsh Martian conditions make it seemingly intolerable for complex, multicellular organisms such as insects to exist in the near-surface and subaerially, life within similar cold, dry paleosol microenvironments (Cryosols) of Antarctica point to life potential for the Red Planet, especially when considering the relatively diverse microbe (bacteria and fungi) population. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toxoplasma gondii, un protozoaire très répandu dans le monde, peut infecter de nombreuses espèces homéothermes incluant les mammifères et les oiseaux qui développent alors une toxoplasmose. L’impact de la toxoplasmose en termes de santé publique est majeur, particulièrement chez les personnes immunodéprimées et les foetus. Les niveaux d’infection humaine dans certaines régions de l’Arctique Canadien sont parmi les plus élevés au monde et ce, malgré l’absence de félidés qui sont les seuls hôtes capables d’excréter T. gondii. Plusieurs études ont suggéré la consommation de viande crue de mammifères marins et notamment de phoques comme source d’infection des Inuits. Notre travail de recherche visait à comprendre les mécanismes de dispersion de T. gondii dans les écosystèmes aquatiques menant à la contamination du milieu marin de l’Arctique par des oocystes, et à évaluer l’importance de cette voie de dispersion dans l’infection des phoques et conséquemment dans celle des Inuits. Notre hypothèse était que les oocystes de T. gondii, excrétés durant l’hiver par des félidés dans le Subarctique et transportés par les rivières pendant la fonte printanière, contaminaient les estuaires de l’Arctique Canadien. Dans un premier temps, une étude transversale de séroprévalence chez les phoques de l’Arctique Canadien a montré que ces populations étaient infectées par T. gondii et pouvaient ainsi a priori constituer une source d’infection pour les Inuit. Des variations spatio-temporelles de la séroprévalence étaient observées suggérant un lien potentiel avec des variations dans la contamination environnementale par les oocystes. Un schéma conceptuel explicitant les mécanismes de transport et de devenir des oocystes de T. gondii, du phénomène de la fonte de la neige jusqu’à l’exposition des organismes marins, a été proposé dans le chapitre suivant. Des interactions entre les différents mécanismes identifiés, qui agissent sur des échelles spatio-temporelles variées, devraient favoriser l’apparition de concentrations relativement élevées aux estuaires permettant ainsi l’exposition et potentiellement l’infection de phoques. Pour évaluer la contamination environnementale par les oocystes excrétés par la population de lynx du bassin versant de l’Arctique Canadien (les seuls félidés majoritairement distribués dans ce vaste territoire), nous avons mené une étude sérologique de type transversale dans cette population. Cette étude a permis de montrer que des lynx étaient infectés par T. gondii et a également suggéré que la dynamique des cycles de populations lynx-lièvres pouvait être un processus important dans la transmission de T. gondii. Finalement, la modélisation du transport hydrique des oocystes a indiqué que les concentrations hypothétiques d’oocystes dans l’eau de la fonte pourraient être suffisantes pour permettre l’exposition au niveau des estuaires de bivalves filtreurs, qui sont des proies pour les phoques et donc potentiellement des sources infectieuses pour ces derniers. Dans des écosystèmes nordiques en pleine mutation, la compréhension des mécanismes de transmission d’agents pathogènes d’origine hydrique comme T. gondii est plus que nécessaire, notamment dans le but de protéger les populations fragilisées de ces régions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[1] High-elevation forests represent a large fraction of potential carbon uptake in North America, but this uptake is not well constrained by observations. Additionally, forests in the Rocky Mountains have recently been severely damaged by drought, fire, and insect outbreaks, which have been quantified at local scales but not assessed in terms of carbon uptake at regional scales. The Airborne Carbon in the Mountains Experiment was carried out in 2007 partly to assess carbon uptake in western U.S. mountain ecosystems. The magnitude and seasonal change of carbon uptake were quantified by (1) paired upwind-downwind airborne CO2 observations applied in a boundary layer budget, (2) a spatially explicit ecosystem model constrained using remote sensing and flux tower observations, and (3) a downscaled global tracer transport inversion. Top-down approaches had mean carbon uptake equivalent to flux tower observations at a subalpine forest, while the ecosystem model showed less. The techniques disagreed on temporal evolution. Regional carbon uptake was greatest in the early summer immediately following snowmelt and tended to lessen as the region experienced dry summer conditions. This reduction was more pronounced in the airborne budget and inversion than in flux tower or upscaling, possibly related to lower snow water availability in forests sampled by the aircraft, which were lower in elevation than the tower site. Changes in vegetative greenness associated with insect outbreaks were detected using satellite reflectance observations, but impacts on regional carbon cycling were unclear, highlighting the need to better quantify this emerging disturbance effect on montane forest carbon cycling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global mean temperature in 2008 was slightly cooler than that in 2007; however, it still ranks within the 10 warmest years on record. Annual mean temperatures were generally well above average in South America, northern and southern Africa, Iceland, Europe, Russia, South Asia, and Australia. In contrast, an exceptional cold outbreak occurred during January across Eurasia and over southern European Russia and southern western Siberia. There has been a general increase in land-surface temperatures and in permafrost temperatures during the last several decades throughout the Arctic region, including increases of 1° to 2°C in the last 30 to 35 years in Russia. Record setting warm summer (JJA) air temperatures were observed throughout Greenland. The year 2008 was also characterized by heavy precipitation in a number of regions of northern South America, Africa, and South Asia. In contrast, a prolonged and intense drought occurred during most of 2008 in northern Argentina, Paraguay, Uruguay, and southern Brazil, causing severe impacts to agriculture and affecting many communities. The year began with a strong La Niña episode that ended in June. Eastward surface current anomalies in the tropical Pacific Ocean in early 2008 played a major role in adjusting the basin from strong La Niña conditions to ENSO-neutral conditions by July–August, followed by a return to La Niña conditions late in December. The La Niña conditions resulted in far-reaching anomalies such as a cooling in the central tropical Pacific, Arctic Ocean, and the regions extending from the Gulf of Alaska to the west coast of North America; changes in the sea surface salinity and heat content anomalies in the tropics; and total column water vapor, cloud cover, tropospheric temperature, and precipitation patterns typical of a La Niña. Anomalously salty ocean surface salinity values in climatologically drier locations and anomalously fresh values in rainier locations observed in recent years generally persisted in 2008, suggesting an increase in the hydrological cycle. The 2008 Atlantic hurricane season was the 14th busiest on record and the only season ever recorded with major hurricanes each month from July through November. Conversely, activity in the northwest Pacific was considerably below normal during 2008. While activity in the north Indian Ocean was only slightly above average, the season was punctuated by Cyclone Nargis, which killed over 145,000 people; in addition, it was the seventh-strongest cyclone ever in the basin and the most devastating to hit Asia since 1991. Greenhouse gas concentrations continued to rise, increasing by more than expected based on with CO2 the 1979 to 2007 trend. In the oceans, the global mean uptake for 2007 is estimated to be 1.67 Pg-C, about CO2 0.07 Pg-C lower than the long-term average, making it the third-largest anomaly determined with this method since 1983, with the largest uptake of carbon over the past decade coming from the eastern Indian Ocean. Global phytoplankton chlorophyll concentrations were slightly elevated in 2008 relative to 2007, but regional changes were substantial (ranging to about 50%) and followed long-term patterns of net decreases in chlorophyll with increasing sea surface temperature. Ozone-depleting gas concentrations continued to fall globally to about 4% below the peak levels of the 2000–02 period. Total column ozone concentrations remain well below pre-1980, levels and the 2008 ozone hole was unusually large (sixth worst on record) and persistent, with low ozone values extending into the late December period. In fact the polar vortex in 2008 persisted longer than for any previous year since 1979. Northern Hemisphere snow cover extent for the year was well below average due in large part to the record-low ice extent in March and despite the record-maximum coverage in January and the shortest snow cover duration on record (which started in 1966) in the North American Arctic. Limited preliminary data imply that in 2008 glaciers continued to lose mass, and full data for 2007 show it was the 17th consecutive year of loss. The northern region of Greenland and adjacent areas of Arctic Canada experienced a particularly intense melt season, even though there was an abnormally cold winter across Greenland's southern half. One of the most dramatic signals of the general warming trend was the continued significant reduction in the extent of the summer sea-ice cover and, importantly, the decrease in the amount of relatively older, thicker ice. The extent of the 2008 summer sea-ice cover was the second-lowest value of the satellite record (which started in 1979) and 36% below the 1979–2000 average. Significant losses in the mass of ice sheets and the area of ice shelves continued, with several fjords on the northern coast of Ellesmere Island being ice free for the first time in 3,000–5,500 years. In Antarctica, the positive phase of the SAM led to record-high total sea ice extent for much of early 2008 through enhanced equatorward Ekman transport. With colder continental temperatures at this time, the 2007–08 austral summer snowmelt season was dramatically weakened, making it the second shortest melt season since 1978 (when the record began). There was strong warming and increased precipitation along the Antarctic Peninsula and west Antarctica in 2008, and also pockets of warming along coastal east Antarctica, in concert with continued declines in sea-ice concentration in the Amundsen/Bellingshausen Seas. One significant event indicative of this warming was the disintegration and retreat of the Wilkins Ice Shelf in the southwest peninsula area of Antarctica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Surface Urban Energy and Water Balance Scheme (SUEWS) is developed to include snow. The processes addressed include accumulation of snow on the different urban surface types: snow albedo and density aging, snow melting and re-freezing of meltwater. Individual model parameters are assessed and independently evaluated using long-term observations in the two cold climate cities of Helsinki and Montreal. Eddy covariance sensible and latent heat fluxes and snow depth observations are available for two sites in Montreal and one in Helsinki. Surface runoff from two catchments (24 and 45 ha) in Helsinki and snow properties (albedo and density) from two sites in Montreal are also analysed. As multiple observation sites with different land-cover characteristics are available in both cities, model development is conducted independent of evaluation. The developed model simulates snowmelt related runoff well (within 19% and 3% for the two catchments in Helsinki when there is snow on the ground), with the springtime peak estimated correctly. However, the observed runoff peaks tend to be smoother than the simulated ones, likely due to the water holding capacity of the catchments and the missing time lag between the catchment and the observation point in the model. For all three sites the model simulates the timing of the snow accumulation and melt events well, but underestimates the total snow depth by 18–20% in Helsinki and 29–33% in Montreal. The model is able to reproduce the diurnal pattern of net radiation and turbulent fluxes of sensible and latent heat during cold snow, melting snow and snow-free periods. The largest model uncertainties are related to the timing of the melting period and the parameterization of the snowmelt. The results show that the enhanced model can simulate correctly the exchange of energy and water in cold climate cities at sites with varying surface cover.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20-45%) of the global land grid points, particularly in areas where the hydro-graph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5-30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly heterogeneous mountain snow distributions strongly affect soil moisture patterns; local ecology; and, ultimately, the timing, magnitude, and chemistry of stream runoff. Capturing these vital heterogeneities in a physically based distributed snow model requires appropriately scaled model structures. This work looks at how model scale—particularly the resolutions at which the forcing processes are represented—affects simulated snow distributions and melt. The research area is in the Reynolds Creek Experimental Watershed in southwestern Idaho. In this region, where there is a negative correlation between snow accumulation and melt rates, overall scale degradation pushed simulated melt to earlier in the season. The processes mainly responsible for snow distribution heterogeneity in this region—wind speed, wind-affected snow accumulations, thermal radiation, and solar radiation—were also independently rescaled to test process-specific spatiotemporal sensitivities. It was found that in order to accurately simulate snowmelt in this catchment, the snow cover needed to be resolved to 100 m. Wind and wind-affected precipitation—the primary influence on snow distribution—required similar resolution. Thermal radiation scaled with the vegetation structure (~100 m), while solar radiation was adequately modeled with 100–250-m resolution. Spatiotemporal sensitivities to model scale were found that allowed for further reductions in computational costs through the winter months with limited losses in accuracy. It was also shown that these modeling-based scale breaks could be associated with physiographic and vegetation structures to aid a priori modeling decisions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of three urban land surface models, run in offline mode, with their default external parameters, is evaluated for two distinctly different sites in Helsinki: Torni and Kumpula. The former is a dense city centre site with 22% vegetation, while the latter is a suburban site with over 50% vegetation. At both locations the models are compared against sensible and latent heat fluxes measured using the eddy covariance technique, along with snow depth observations. The cold climate experienced by the city causes strong seasonal variations that include snow cover and stable atmospheric conditions. Most of the time the three models are able to account for the differences between the study areas as well as the seasonal and diurnal variability of the energy balance components. However, the performances are not systematic across the modelled components, season and surface type. The net all-wave radiation is well simulated, with the greatest uncertainties related to snowmelt timing, when the fraction of snow cover has a key role, particularly in determining the surface albedo. For the turbulent fluxes, more variation between the models is seen which can partly be explained by the different methods in their calculation and partly by surface parameter values. For the sensible heat flux, simulation of wintertime values was the main problem, which also leads to issues in predicting near-surface stabilities particularly at the dense city centre site. All models have the most difficulties in simulating latent heat flux. This study particularly emphasizes that improvements are needed in the parameterization of anthropogenic heat flux and thermal parameters in winter, snow cover in spring and evapotranspiration in order to improve the surface energy balance modelling in cold climate cities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Middle East and Southwest Asia comprise a region that is water-stressed, societally vulnerable, and prone to severe droughts. Large-scale climate variability, particularly La Niña, appears to play an important role in region-wide drought, including the two most severe of the last fifty years—1999-2001 and 2007-2008—with implications for drought forecasting. Important dynamical factors include orography, thermodynamic influence on vertical motion, storm track changes, and moisture transport. Vegetation in the region is strongly impacted by drought and may provide an important feedback mechanism. In future projections, drying of the eastern Mediterranean is a robust feature, as are temperature increases throughout the region, which will affect evaporation and the timing and intensity of snowmelt. Vegetation feedbacks may become more important in a warming climate. There are a wide range of outstanding issues for understanding, monitoring, and predicting drought in the region, including: dynamics of the regional storm track, the relative importance of the range of dynamical mechanisms related to drought, regional coherence of drought, the relationship between synoptic-scale mechanisms and drought, predictability of vegetation and crop yields, stability of remote influences, data uncertainty, and the role of temperature. Development of a regional framework for cooperative work and dissemination of information and existing forecasts would speed understanding and make better use of available information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the increase in water demand and hydropower energy, it is getting more important to operate hydraulic structures in an efficient manner while sustaining multiple demands. Especially, companies, governmental agencies, consultant offices require effective, practical integrated tools and decision support frameworks to operate reservoirs, cascades of run-of-river plants and related elements such as canals by merging hydrological and reservoir simulation/optimization models with various numerical weather predictions, radar and satellite data. The model performance is highly related with the streamflow forecast, related uncertainty and its consideration in the decision making. While deterministic weather predictions and its corresponding streamflow forecasts directly restrict the manager to single deterministic trajectories, probabilistic forecasts can be a key solution by including uncertainty in flow forecast scenarios for dam operation. The objective of this study is to compare deterministic and probabilistic streamflow forecasts on an earlier developed basin/reservoir model for short term reservoir management. The study is applied to the Yuvacık Reservoir and its upstream basin which is the main water supply of Kocaeli City located in the northwestern part of Turkey. The reservoir represents a typical example by its limited capacity, downstream channel restrictions and high snowmelt potential. Mesoscale Model 5 and Ensemble Prediction System data are used as a main input and the flow forecasts are done for 2012 year using HEC-HMS. Hydrometeorological rule-based reservoir simulation model is accomplished with HEC-ResSim and integrated with forecasts. Since EPS based hydrological model produce a large number of equal probable scenarios, it will indicate how uncertainty spreads in the future. Thus, it will provide risk ranges in terms of spillway discharges and reservoir level for operator when it is compared with deterministic approach. The framework is fully data driven, applicable, useful to the profession and the knowledge can be transferred to other similar reservoir systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Canada releases over 150 billion litres of untreated and undertreated wastewater into the water environment every year1. To clean up urban wastewater, new Federal Wastewater Systems Effluent Regulations (WSER) on establishing national baseline effluent quality standards that are achievable through secondary wastewater treatment were enacted on July 18, 2012. With respect to the wastewater from the combined sewer overflows (CSO), the Regulations require the municipalities to report the annual quantity and frequency of effluent discharges. The City of Toronto currently has about 300 CSO locations within an area of approximately 16,550 hectares. The total sewer length of the CSO area is about 3,450 km and the number of sewer manholes is about 51,100. A system-wide monitoring of all CSO locations has never been undertaken due to the cost and practicality. Instead, the City has relied on estimation methods and modelling approaches in the past to allow funds that would otherwise be used for monitoring to be applied to the reduction of the impacts of the CSOs. To fulfill the WSER requirements, the City is now undertaking a study in which GIS-based hydrologic and hydraulic modelling is the approach. Results show the usefulness of this for 1) determining the flows contributing to the combined sewer system in the local and trunk sewers for dry weather flow, wet weather flow, and snowmelt conditions; 2) assessing hydraulic grade line and surface water depth in all the local and trunk sewers under heavy rain events; 3) analysis of local and trunk sewer capacities for future growth; and 4) reporting of the annual quantity and frequency of CSOs as per the requirements in the new Regulations. This modelling approach has also allowed funds to be applied toward reducing and ultimately eliminating the adverse impacts of CSOs rather than expending resources on unnecessary and costly monitoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1984 and 1985 seasonal changes in phytoplankton were studied in a system of three lakes in Loch Vale, Rocky Mountain National Park, Colorado. Three periods were evident: (1) A spring bloom, during snowmelt, of the planktonic diatom Asterionella Formosa, (2) a mid- summer period of minimal algal abundance, and (3) a fall bloom of the blue-green alga Oscillatoria limnetica. Seasonal phytoplankton dynamics in these lakes are controlled partially by the rapid flushing rate during snowmelt and the transport of phytoplankton from the highest lake to the lower lakes by the stream, Icy Brook. During snowmelt, the A. formosa population in the most downstream lake has a net rate of increase of 0.34 d-1, which is calculated from the flushing rate and from the A. formosa abundance in the inflow from the upstream lake and in the downstream lake. Measurement of photosynthetic rates at different depths during the three periods confirmed the rapid growth of A. formosa during the spring. The decline in A. formosa after snowmelt may be related to grazing by developing zooplankton populations. The possible importance of the seasonal variations in nitrate concentrations were evaluated in situ enrichment experiments. For A. formosa and O. limnetica populations, growth stimulation resulted from 8- or 16-micromolar amendments of calcium nitrate and sulfuric acid, but the reason for this stimulation could not be determined from these experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alpine snowbeds are habitats where the major limiting factors for plant growth are herbivory and a small time window for growth due to late snowmelt. Despite these limitations, snowbed vegetation usually forms a dense carpet of palatable plants due to favourable abiotic conditions for plant growth within the short growing season. These environmental characteristics make snowbeds particularly interesting to study the interplay of facilitation and competition. We hypothesised an interplay between resource competition and facilitation against herbivory. Further, we investigated whether these predicted neighbour effects were species-specific and/or dependent on ontogeny, and whether the balance of positive and negative plant–plant interactions shifted along a snowmelt gradient. We determined the neighbour effects by means of neighbour removal experiments along the snowmelt gradient, and linear mixed model analyses. The results showed that the effects of neighbour removal were weak but generally consistent among species and snowmelt dates, and depended on whether biomass production or survival was considered. Higher total biomass and increased fruiting in removal plots indicated that plants competed for nutrients, water, and light, thereby supporting the hypothesis of prevailing competition for resources in snowbeds. However, the presence of neighbours reduced herbivory and thereby also facilitated survival. For plant growth the facilitative effects against herbivores in snowbeds counterbalanced competition for resources, leading to a weak negative net effect. Overall the neighbour effects were not species-specific and did not change with snowmelt date. Our finding of counterbalancing effects of competition and facilitation within a plant community is of special theoretical value for species distribution models and can explain the success of models that give primary importance to abiotic factors and tend to overlook interrelations between biotic and abiotic effects on plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alpine snowbeds are characterised by a very short growing season. However, the length of the snow-free period is increasingly prolonged due to climate change, so that snowbeds become susceptible to invasions from neighbouring alpine meadow communities. We hypothesised that spatial distribution of species generated by plant interactions may indicate whether snowbed species will coexist with or will be out-competed by invading alpine species – spatial aggregation or segregation will point to coexistence or competitive exclusion, respectively. We tested this hypothesis in snowbeds of the Swiss Alps using the variance ratio statistics. We focused on the relationships between dominant snowbed species, subordinate snowbed species, and potentially invading alpine grassland species. Subordinate snowbed species were generally spatially aggregated with each other, but were segregated from alpine grassland species. Competition between alpine grassland and subordinate snowbed species may have caused this segregation. Segregation between these species groups increased with earlier snowmelt, suggesting an increasing importance of competition with climate change. Further, a dominant snowbed species (Alchemilla pentaphyllea) was spatially aggregated with subordinate snowbed species, while two other dominants (Gnaphalium supinum and Salix herbacea) showed aggregated patterns with alpine grassland species. These dominant species are known to show distinct microhabitat preferences suggesting the existence of hidden microhabitats with different susceptibility to invaders. These results allow us to suggest that alpine snowbed areas are likely to be reduced as a consequence of climate change and that invading species from nearby alpine grasslands could outcompete subordinate snowbed species. On the other hand, microhabitats dominated by Gnaphalium or Salix seem to be particularly prone to invasions by non-snowbed species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The status and dynamics of glaciers are crucial for agriculture in semiarid parts of Central Asia, since river flow is characterized by major runoff in spring and summer, supplied by glacier- and snowmelt. Ideally, this coincides with the critical period of water demand for irrigation. The present study shows a clear trend in glacier retreat between 1963 and 2000 in the Sokoluk watershed, a catchment of the Northern Tien Shan mountain range in Kyrgyzstan. The overall area loss of 28% observed for the period 1963–2000, and a clear acceleration of wastage since the 1980s, correlate with the results of previous studies in other regions of the Tien Shan as well as the Alps. In particular, glaciers smaller than 0.5 km2 have exhibited this phenomenon most starkly. While they registered a medium decrease of only 9.1% for 1963–1986, they lost 41.5% of their surface area between 1986 and 2000. Furthermore, a general increase in the minimum glacier elevation of 78 m has been observed over the last three decades. This corresponds to about one-third of the entire retreat of the minimum glacier elevation in the Northern Tien Shan since the Little Ice Age maximum.