842 resultados para sludge reduction
Resumo:
In developing countries such as Brazil, the wastes generated in the decanters and filters of water treatment plants are discharged directly into the same rivers and streams that supply water for treatment. Another environmental problem is the unregulated discard of wood wastes. The lumber and wood products industry generates large quantities of this waste, from logging to the manufacture of the end product. Brazil has few biomass plants and therefore only a minor part of these wastes are reused. This paper presents the results of the first study involving a novel scientific and technological approach to evaluate the possibility of combining these two types of wastes in the production of a light-weight composite for concrete. The concrete produced with cement:sand:composite:water mass ratios of 1:2.5:0.67:0.6 displayed an axial compressive strength of 11.1 MPa, a compressive and diametral tensile strength of 1.2 MPa, water absorption of 8.8%, and a specific mass of 1.847 kg/m(3). The mechanical properties obtained with this concrete render it suitable for application in non-structural elements. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The goal of this paper is to study and propose a new technique for noise reduction used during the reconstruction of speech signals, particularly for biomedical applications. The proposed method is based on Kalman filtering in the time domain combined with spectral subtraction. Comparison with discrete Kalman filter in the frequency domain shows better performance of the proposed technique. The performance is evaluated by using the segmental signal-to-noise ratio and the Itakura-Saito`s distance. Results have shown that Kalman`s filter in time combined with spectral subtraction is more robust and efficient, improving the Itakura-Saito`s distance by up to four times. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The noise, vibration and harshness (NVH) performance of passenger vehicles strongly depends on the fluid-structure interaction between the air in the vehicle cavity and the sheet metal structure of the vehicle. Most of the noise and vibration problems related to this interaction come from resonance peaks of the sheet metal, which are excited by external forces (road, engine, and wind). A reduction in these resonance peaks can be achieved by applying bitumen damping layers, also called deadeners, in the sheet metal. The problem is where these deadeners shall be fixed, which is usually done in a trial-and-error basis. In this work, one proposes the use of embedded sensitivity to locate the deadeners in the sheet metal of the vehicle, more specifically in the vehicle roof. Experimental frequency response functions (FRFs) of the roof are obtained and the data are processed by adopting the embedded sensitivity method, thus obtaining the sensitivity of the resonance peaks on the local increase in damping due to the deadeners. As a result, by examining the sensitivity functions, one can find the optimum location of the deadeners that maximize their effect in reducing the resonance peaks of interest. After locating the deadeners in the optimum positions, it was possible to verify a strong reduction in resonance peaks of the vehicle roof, thus showing the efficiency of the procedure. The main advantage of this procedure is that it only requires FRF measurements of the vehicle in its original state not needing any previous modification of the vehicle structure to find the sensitivity functions. [DOI: 10.1115/1.4000769]
Resumo:
Linear alkylbenzene sulfonate (LAS) is an anionic surfactant widely used to manufacture detergents and found in domestic and industrial wastewater. LAS removal was evaluated in a horizontal anaerobic immobilized biomass reactor. The system was filled with polyurethane foam and inoculated with sludge that was withdrawn from an up flow anaerobic sludge blanket reactor that is used to treat swine wastewater. The reactor was fed with easily degradable substrates and a solution of commercial LAS for 313 days. The hydraulic retention time applied was 12 h. The system was initially operated without detergent and resulted to 94% reduction of demand. The mass balance in the system indicated that the LAS removal efficiency was 45% after 180 days. From the 109th day to the 254th day, a removal efficiency of 32% was observed. The removal of LAS was approximately 40% when 1500 mg of LAS were applied in the absence of co-substrates suggesting that the LAS molecules were used selectively. Microscopic analyses of the biofilm revealed diverse microbial morphologies and denaturing gradient gel electrophoresis profiling showed variations in the total bacteria and sulfate-reducing bacteria populations. 16S rRNA sequencing and phylogenetic analyses demonstrated that members of the order Clostridiales were the major components of the bacterial community in the last step of the reactor operation. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The main objective of this research was to evaluate the potential use of a bench-scale anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal as inert support for removal Of Sulfide and organic matter effluents from an ASBBR (1.2 m(3)) utilized for treatment of sulfate-rich wastewater. The cycle time was 48 h, including the steps of feeding (2 h), reaction with continuous liquid recirculation (44 h) and discharge (2 h). COD removal efficiency was up to 90% and the effluents total sulfide concentrations (H(2)S, HS(-), S(2-)) remained in the range of 1.5 to 7.5 mg.l(-1) during the 50 days of operation (25 cycles). The un-ionized Sulfide and ionized sulfides were converted by biological process to elemental sulfur (S(0)) under oxygen limited conditions. The results obtained in the bench-scale reactor were used to design an ASBBR in pilot scale for use in post-treatment to achieve the emission standards (sulfide and COD) for sulfate reduction. The pilot-scale reactor, with a total volume of 0.43 m(3), the COD and total sulfide removal achieved 88% and 57%, respectively, for a cycle time of 48 h (70 days of operation or 35 cycles).
Resumo:
This study evaluates the stability of hydrogen and organic acids production in an anaerobic fluidized-bed reactor (AFBR) that contains expanded clay (2.8-3.35 mm in diameter) as a support medium and is operated on a long-term basis. The reactor was inoculated with thermally pre-treated anaerobic sludge and operated with decreasing hydraulic retention time (HRT), from 8 h to 1 h, at a controlled temperature of 30 degrees C and a pH of about 3.8. Glucose (2000 mg L(-1)) was used as the substrate, generating conversion rates of 92-98%. Decreasing the HRT from 8 h to 1 h led to an increase in average hydrogen-production rates, with a maximum value of 1.28 L h(-1) L(-1) for an HRT of 1 h. In general, hydrogen yield production increased as HRT decreased, reaching 2.29 mol of H(2)/mol glucose at an HRT of 2 h and yielding a maximum hydrogen content of 37% in the biogas. No methane was detected in the biogas throughout the period of operation. The main soluble metabolites (SMP) were acetic acid (46.94-53.84% of SMP) and butyric acid (34.51-42.16% of SMP), with less than 15.49% ethanol. The steady performance of the AFBR may be attributed to adequate thermal treatment of the inoculum, the selection of a suitable support medium for microbial adhesion, and the choice of satisfactory environmental conditions imposed on the system. The results show that stable hydrogen production and organic acids production were maintained in the AFBR over a period of 178 days. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Recent studies have shown that partial oxidation by advanced oxidation processes (AOP) is able to transform hard-to-degrade compounds and increase their biodegradability. In this work, anaerobic treatment was followed by ozonation, UV radiation and ozonation in the presence of UV radiation, to treat bleaching effluents from a cellulose kraft Pulp plant. The anaerobic reactor (horizontal anaerobic immobilized Sludge bed, HAISB) was Used as a pretreatment to reduce the efficient organic load before applying ACIP. The ozone treatments were applied in three different pH environments (3, 8 and 10) with retention times of 10, 30, 45 and 60 min. COD and adsorbable organic halogens (AOX) removal efficiencies at the HAISB were approximately 50%, while the BOD removal efficiency reached 80%. Ozonation promoted further removal of AOX and COD so that the combined efficiency reached 96% for AOX and 70% for COD. In the oxidation process, BOD was either removed in small quantities or actually increased, as intended, so that a second biological treatment would be able to complete the treatment. The maximum increase in the BOD(5)/COD ratio (biodegradability indicator) Occurred at pH 8, reaching 104% for ozonation at a dosage of 1540 mg(O3).L(-1). Applying UV radiation alone resulted in lower values: a 34% increase ill the BOD(5)/COD ratio and a 76% AOX removal efficiency. These results indicate that the combination of anaerobic treatment with ozonation or ozonation/UV radiation improves the treatability of cellulose pulp bleaching efficients and that the resulting wastewater is suitable for further biological treatment under aerobic conditions with a low level of toxic compounds from the halogenated family.
Resumo:
A broader characterization of industrial wastewaters, especially in respect to hazardous compounds and their potential toxicity, is often necessary in order to determine the best practical treatment (or pretreatment) technology available to reduce the discharge of harmful pollutants to the environment or publicly owned treatment works. Using a toxicity-directed approach, this paper sets the base for a rational treatability study of polyester resin manufacturing. Relevant physical and chemical characteristics were determined. Respirometry was used for toxicity reduction evaluation after physical and chemical effluent fractionation. Of all the procedures investigated, only air stripping was significantly effective in reducing wastewater toxicity. Air stripping in pH 7 reduced toxicity in 18.2%, while in pH 11 a toxicity reduction of 62.5% was observed. Results indicated that toxicants responsible for the most significant fraction of the effluent`s instantaneous toxic effect to unadapted activated sludge were organic compounds poorly or not volatilized in acid conditions. These results led to useful directions for conducting treatability studies which will be grounded on actual effluent properties rather than empirical or based on the rare specific data on this kind of industrial wastewater. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The goal of this work is to investigate the reduction of chromium from a quaternary slag by carbon dissolved in liquid steel. Laboratory scale experiments were conducted to study the reduction of chromium oxides in the slag by carbon dissolved in the melt. These experiments were made under different conditions of slag basicity and amount of added carbon. Thermodynamic calculations based on Double Sublattice model were applied using the commercial software Thermo-Calc, with the IRSID database. The results obtained showed good correlation with practical and calculated results, making it possible to predict equilibrium conditions of the system and to determine the activities of chromium oxides in the slag.
Resumo:
The aim of this work is to study the reaction rate and the morphology of the intermediary reaction products during reduction of iron ore, when iron ore and carbonaceous material are agglomerated together as a carbon composite iron ore pellet. The reaction was performed at high temperatures, and in order to avoid heat transfer constraints small size samples were used. The carbonaceous materials employed were coke breeze and pure graphite. Portland cement was employed as a binder, and the pellets diameter was 5.2 mm. The experimental technique involved the measurement of the pellets weight loss, as well as interruption of the reaction at different stages in order to submit the partially reduced pellet to scanning electron microscopy. It has been observed that above 1523 K there is the formation of liquid slag inside the pellets, which partially dissolves iron oxides. The apparent activation energies obtained were 255 kJ/mol for coke breeze containing pellets, and 230 kJ/mol for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.
Resumo:
The aim of this work is to study MnO reduction by solid carbon. The influence of size of carbon particles, slag basicity, and bath temperature on MnO reduction was investigated. Fine Manganese ore particles were used as a source of MnO. Three sizes of carbon particles were used; 0.230 mm, 0.162 mm and 0.057 mm, binary basicity of 1 and 1.5 and temperatures of 1550, 1550 and 1600 degrees C. Curves were drawn for Mn content in the bath as a function of time and temperature for the several studied parameters. The MnO reduction rates were determined using these data. [doi:10.2320/matertrans.M2011007]
Resumo:
This letter addresses the optimization and complexity reduction of switch-reconfigured antennas. A new optimization technique based on graph models is investigated. This technique is used to minimize the redundancy in a reconfigurable antenna structure and reduce its complexity. A graph modeling rule for switch-reconfigured antennas is proposed, and examples are presented.
Resumo:
This experiment examined the effects of the discharge of water treatment plant (WTP) sludge into the following three types of wastewater treatment systems: a pilot-scale upflow anaerobic sludge blanket (UASB) reactor, a pilot-scale activated sludge system, and a full-scale activated sludge sequencing batch reactor (SBR). The UASB reactor received 50 mg of suspended solids ( SS) of WTP sludge per liter of wastewater in the first phase, and, in the second phase, it received 75 mg SS/L. The pilot-scale activated sludge system received 25 and 50 mg SS/L in the first and second phases, respectively. The full-scale WWTP ( SBR) received approximately 74 mg SS/L. The results of the experiments showed that, despite some negative effects on nitrification, there were positive effects on phosphorus removal, and, furthermore, there was the addition of solids in all systems. Water Environ. Res., 82, 392 ( 2010).
Resumo:
The optimization of the treatment process for residual waters from a brewery operating under the modality of an anaerobic reactor and activated sludge combination was studied in two phases. In the first stage, lasting for six months, the characteristics and parameters of the plant operation were analyzed, wherein a diversion rate of more than 50% to aerobic treatment, the use of two aeration tanks and a high sludge production prevailed. The second stage comprised four months during which the system worked under the proposed operational model, with the aim of improving the treatment: reduction of the diversion rate to 30% and use of only one aeration tank At each stage, TSS, VSS and COD were measured at the entrance and exit of the anaerobic reactor mid the aeration tanks. The results were compared with the corresponding design specifications and the needed conditions were applied to reduce the diversion rate towards the aerobic process through monitoring the volume and concentration of the affluent, while applying the strategic changes in reactor parameters needed to increase its efficiency. A diversion reduction from 53 to 34% was achieved, reducing the sludge discharge generated in the aerobic system from 3670mg TSS/l. with two aeration tanks down to 2947mf TSS/l using one tank keeping the same relation VSS:TSS (0.55) and an efficiency of total removal of 98% in terms of COD.
Resumo:
Aiming the use of the sewage sludge produced in one of the largest Brazilian wastewater treatment stations as a raw material for the ceramic industry, the sintering process of the ashes produced from its calcination was evaluated by heating microscopy thermal analysis (HMTA). From the microprocessed images, a method was developed to obtain HMTA dimensional change curves as a function of temperature, equivalent to those usually obtained from dilatometers or by thermomechanical analysis (TMA). The final product after sintering at 1050 degrees C, characterized by X-ray fluorescence spectrometry, scanning electron microscopy and X-ray dispersive energy, indicates the presence of a vitreous phase containing phosphorus, which explains the good sintering properties of the studied calcined sludge, as shown from its HMTA dimensional change curve.