76 resultados para skiing
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Climate change as a phenomenon will imply new risks for the ski industry. Intergovernmental Panal on Climate Change presents three future scenarios, during the periods between 1990-2100, in forms of increased temperatures, a rise in the sea level and seasonal variations, variables out of which two have direct impacts on the ski industry. The aim for this study was to explore and compare attitudes towards climate change between five ski resorts located in mid-south of Sweden. This was done through in depth interviews in both face to face and by telephone. The result of the study was that all the chosen ski resorts were aware of climate change as a phenomenon but have not yet recognized its consequences. All ski resorts use methods to maintain skiing i.e. artificial snow production though not because of climate change.
Resumo:
The overall aim of this thesis has been to investigate the meaning of the capability to move in order to identify and describe this capability from the perspective of the one who moves in relation to specific movements. It has been my ambition to develop ways to explicate, and thereby open up for discussion, what might form an educational goal in the context of movements and movement activities in the school subject of physical education and health (PEH). In this study I have used a practical epistemological perspective on capability to move, a perspective that challenges the traditional distinction between mental and physical skills as well as between theoretical and practical knowledge. Movement actions, or ways of moving, are seen as expressions of knowing. In order to explore an understanding of the knowing involved in specific ways of moving, observations of actors’ ways of moving and their own experiences of moving were brought together. Informants from three different arenas took part: from PEH in upper secondary school, from athletics and from free-skiing. The results of the analyses suggest it is possible to describe practitioners’ developed knowing as a number of specific ways of knowing that are in turn related to specific ways of moving. Examples of such specific ways of moving may be discerning and modifying one’s own rotational velocity and navigating one’s (bodily) awareness. Additionally, exploring learners’ pre-knowing of a movement ‘as something’ may be fruitful when planning the teaching and learning of capability to move. I have suggested that these specific ways of knowing might be regarded as educational goals in PEH. In conducting this study, I have also had the ambition to contribute to the ongoing discussion of what ‘ability’ in the PEH context might mean. In considering specific ways of knowing in moving, the implicit and taken-for-granted meaning of ‘standards of excellence’ and ‘sports ability’can be discussed, and challenged.
Resumo:
The aim of this study was 1) to validate the 0.5 body-mass exponent for maximal oxygen uptake (V. O2max) as the optimal predictor of performance in a 15 km classical-technique skiing competition among elite male cross-country skiers and 2) to evaluate the influence of distance covered on the body-mass exponent for V. O2max among elite male skiers. Twenty-four elite male skiers (age: 21.4±3.3 years [mean ± standard deviation]) completed an incremental treadmill roller-skiing test to determine their V. O2max. Performance data were collected from a 15 km classicaltechnique cross-country skiing competition performed on a 5 km course. Power-function modeling (ie, an allometric scaling approach) was used to establish the optimal body-mass exponent for V . O2max to predict the skiing performance. The optimal power-function models were found to be race speed = 8.83⋅(V . O2max m-0.53) 0.66 and lap speed = 5.89⋅(V . O2max m-(0.49+0.018lap)) 0.43e0.010age, which explained 69% and 81% of the variance in skiing speed, respectively. All the variables contributed to the models. Based on the validation results, it may be recommended that V. O2max divided by the square root of body mass (mL⋅min−1 ⋅kg−0.5) should be used when elite male skiers’ performance capability in 15 km classical-technique races is evaluated. Moreover, the body-mass exponent for V . O2max was demonstrated to be influenced by the distance covered, indicating that heavier skiers have a more pronounced positive pacing profile (ie, race speed gradually decreasing throughout the race) compared to that of lighter skiers.
Resumo:
Background: Physical activity is of benefit for primary prevention of cardiovascular diseases, but it appears to increase the risk for atrial fibrillation. We aimed to study a cohort of patients following a first stroke in individuals with previous high physical activity, compare them to the general population with respect to recurrent stroke and death, and relate these to atrial fibrillation. Methods and results: From the participants of the Vasaloppet, the world's largest ski-race, and matched individuals from the general population (n=708 604), we identified 5964 patients hospitalized with a first-time stroke between 1994 and 2010. Individuals with severe diseases were excluded. One half percent of skiers and 1% of nonskiers were hospitalized due to stroke. The incidence rate was 8.3 per 100 person-years among skiers and 11.1 among nonskiers. The hazard ratio (HR) for recurrent stroke or death between the 2 groups was 0.76 (95% CI 0.67 to 0.86). The result was consistent in subgroups. The HR for death was 0.66 (95% CI 0.56 to 0.78) and for recurrent stroke 0.82 (95% CI 0.70 to 0.96). After adjustment for smoking and socioeconomic factors, the HR for death was consistent at 0.70 (95% CI 0.56 to 0.87) while the HR for recurrent stroke was not statistically significant. Outcomes for skiers with atrial fibrillation tended to show a lower risk than for nonskiers. Conclusions: This large cohort study supports the hypothesis that patients with a stroke and with prior regular physical activity have a lower risk of death, while their risk for recurrent stroke is similar to that of nonskiers. The skiers had a higher incidence of atrial fibrillation, but still no increased risk of recurring stroke.
Resumo:
The purpose of this study was to investigate pacing-profile differences during the 90 km Vasaloppet ski race related to the categories of sex, age, and race experience. Skiing times from eight sections (S1 to S8) were analyzed. For each of the three categories, 400 pairs of skiers were matched to have a finish time within 60 seconds, the same start group, and an assignment to the same group for the other two categories. Paired-samples Student’s t-tests were used to investigate sectional pacing-profile differences between the subgroups. Results showed that males skied faster in S2 (P=0.0042), S3 (P=0.0049), S4 (P=0.010), and S1–S4 (P<0.001), whereas females skied faster in S6 (P<0.001), S7 (P<0.001), S8 (P=0.0088), and S5–S8 (P<0.001). For the age category, old subjects (40 to 59 years) skied faster than young subjects (19 to 39 years) in S3 (P=0.0029), and for the other sections, there were no differences. Experienced subjects (≥4 Vasaloppet ski race completions) skied faster in S1 (P<0.001) and S1–S4 (P=0.0054); inexperienced skiers (<4 Vasaloppet ski race completions) had a shorter mean skiing time in S5–S8 (P=0.0063). In conclusion, females had a more even pacing profile than that of males with the same finish time, start group, age, and race experience. No clear age-related pacing-profile difference was identified for the matched subgroups. Moreover, experienced skiers skied faster in the first half whereas inexperienced skiers had higher skiing speeds during the second half of the race.
Resumo:
Skiing and snowboarding is a fairly expensive activity for participant and one in which the industry as a whole makes handsome profits. In the 2005/06 season, resorts in the Northeast reported an average gross revenue of $18.5 million. (NSAA) With the current weather phenomenon of El Nino, however, resorts in New England especially, have been suffering economically. The gross revenue in New England in the ’05/’06 season was down 4% from the previous year, likely due to the fact the total snowfall declined by 16%. (NSAA) Much of this loss in revenue came during the Christmas to New Years vacation period. In the 2007 season, most mountains were less than half-opened during this peak week and the number of skiers and riders was especially low. With such a large decrease in profits, it is likely that many people will soon be affected (if they have not already been), including local employees. This project, therefore, seeks to analyze the impact that the resorts have on the local economies in order to determine the potential problems the changing snowfall patterns could have on locals’ well-being. It is hypothesized that there will be a strong correlation between the proximity of a community to a resort and the relative economic prosperity of that community; meaning that the ski industry is a pivotal part of their income and livelihood.
Resumo:
This map is designed as a resource for students and the public to use and develop a better understanding of the trails system on the Colby Campus. I used a Garmin GPSmap 60CS to chart all the trails on Runnals Hill and in the Arboretum. Then, using ArcGIS, I compiled the tracked trails and laid them over an aerial photo of the campus. Because many of the trails are hard to find, I took digital photos of each trail entry to help the user locate them. Then, by taking note of the grade and width of the trail, I decided which trails were suitable for certain activities. This gives users an idea of where to go for walking, running, mountain biking, cross-country skiing, and snowshoeing.
Resumo:
Running economy (RE), defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (15-30 days), have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VOax). However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises) seems to impair RE only for subsequent high-intensity exercise (90% VOax). Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect) attenuates changes in indirect markers of muscle damage and blunts changes in RE. © 2013 Cláudio de Oliveira Assumpção et al.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
[EN] To determine whether conditions for O2 utilization and O2 off-loading from the hemoglobin are different in exercising arms and legs, six cross-country skiers participated in this study. Femoral and subclavian vein blood flow and gases were determined during skiing on a treadmill at approximately 76% maximal O2 uptake (V(O2)max) and at V(O2)max with different techniques: diagonal stride (combined arm and leg exercise), double poling (predominantly arm exercise), and leg skiing (predominantly leg exercise). The percentage of O2 extraction was always higher for the legs than for the arms. At maximal exercise (diagonal stride), the corresponding mean values were 93 and 85% (n = 3; P < 0.05). During exercise, mean arm O2 extraction correlated with the P(O2) value that causes hemoglobin to be 50% saturated (P50: r = 0.93, P < 0.05), but for a given value of P50, O2 extraction was always higher in the legs than in the arms. Mean capillary muscle O2 conductance of the arm during double poling was 14.5 (SD 2.6) ml.min(-1).mmHg(-1), and mean capillary P(O2) was 47.7 (SD 2.6) mmHg. Corresponding values for the legs during maximal exercise were 48.3 (SD 13.0) ml.min(-1).mmHg(-1) and 33.8 (SD 2.6) mmHg, respectively. Because conditions for O2 off-loading from the hemoglobin are similar in leg and arm muscles, the observed differences in maximal arm and leg O2 extraction should be attributed to other factors, such as a higher heterogeneity in blood flow distribution, shorter mean transit time, smaller diffusing area, and larger diffusing distance, in arms than in legs.
Resumo:
[EN] That muscular blood flow may reach 2.5 l kg(-1) min(-1) in the quadriceps muscle has led to the suggestion that muscular vascular conductance must be restrained during whole body exercise to avoid hypotension. The main aim of this study was to determine the maximal arm and leg muscle vascular conductances (VC) during leg and arm exercise, to find out if the maximal muscular vasodilatory response is restrained during maximal combined arm and leg exercise. Six Swedish elite cross-country skiers, age (mean +/-s.e.m.) 24 +/- 2 years, height 180 +/- 2 cm, weight 74 +/- 2 kg, and maximal oxygen uptake (VO(2,max)) 5.1 +/- 0.1 l min(-1) participated in the study. Femoral and subclavian vein blood flows, intra-arterial blood pressure, cardiac output, as well as blood gases in the femoral and subclavian vein, right atrium and femoral artery were determined during skiing (roller skis) at approximately 76% of VO(2,max) and at VO(2,max) with different techniques: diagonal stride (combined arm and leg exercise), double poling (predominantly arm exercise) and leg skiing (predominantly leg exercise). During submaximal exercise cardiac output (26-27 l min(-1)), mean blood pressure (MAP) (approximately 87 mmHg), systemic VC, systemic oxygen delivery and pulmonary VO2(approximately 4 l min(-1)) attained similar values regardless of exercise mode. The distribution of cardiac output was modified depending on the musculature engaged in the exercise. There was a close relationship between VC and VO2 in arms (r= 0.99, P < 0.001) and legs (r= 0.98, P < 0.05). Peak arm VC (63.7 +/- 5.6 ml min(-1) mmHg(-1)) was attained during double poling, while peak leg VC was reached at maximal exercise with the diagonal technique (109.8 +/- 11.5 ml min(-1) mmHg(-1)) when arm VC was 38.8 +/- 5.7 ml min(-1) mmHg(-1). If during maximal exercise arms and legs had been vasodilated to the observed maximal levels then mean arterial pressure would have dropped at least to 75-77 mmHg in our experimental conditions. It is concluded that skeletal muscle vascular conductance is restrained during whole body exercise in the upright position to avoid hypotension.
Resumo:
[EN] To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed by 10 min of double poling and diagonal stride at 72-76% maximal O(2) uptake. A high lactate appearance rate (R(a), 184 +/- 17 micromol x kg(-1) x min(-1)) but a low arterial lactate concentration ( approximately 2.5 mmol/l) were observed during Continuous Arm + Leg despite a substantial net lactate release by the arm of approximately 2.1 mmol/min, which was balanced by a similar net lactate uptake by the leg. Whole body and limb lactate oxidation during Continuous Arm + Leg was approximately 45% at rest and approximately 95% of disappearance rate and limb lactate uptake, respectively. Limb lactate kinetics changed multiple times when exercise mode was changed. Whole body glucose and glycerol turnover was unchanged during the different skiing modes; however, limb net glucose uptake changed severalfold. In conclusion, the arterial lactate concentration can be maintained at a relatively low level despite high lactate R(a) during exercise with a large muscle mass because of the large capacity of active skeletal muscle to take up lactate, which is tightly correlated with lactate delivery. The limb lactate uptake during exercise is oxidized at rates far above resting oxygen consumption, implying that lactate uptake and subsequent oxidation are also dependent on an elevated metabolic rate. The relative contribution of whole body and limb lactate oxidation is between 20 and 30% of total carbohydrate oxidation at rest and during exercise under the various conditions. Skeletal muscle can change its limb net glucose uptake severalfold within minutes, causing a redistribution of the available glucose because whole body glucose turnover was unchanged.
Resumo:
Traumatic posterior dislocation of the hip associated with a fracture of the posterior acetabular wall and of the neck of the femur is a rare injury. A 29-year-old man presented at a level 1 trauma centre with a locked posterior dislocation of the right hip, with fractures of the femoral neck and the posterior wall of the acetabulum after a bicycle accident. An attempted closed reduction had failed. This case report describes in detail the surgical management and the clinical and radiological outcome. Open reduction and fixation with preservation of the intact retinaculum was undertaken within five hours of injury with surgical dislocation of the hip and a trochanteric osteotomy. Two years after operation the function of the injured hip was good. Plain radiographs and MR scans showed early signs of osteoarthritis with some loss of joint space but no evidence of avascular necrosis. The patient had begun skiing and hiking again. The combination of fractures of the neck of the femur and of the posterior wall of the acetabulum hampers closed reduction of a posterior dislocation of the hip. Surgical dislocation of the hip with trochanteric flip osteotomy allows controlled open reduction of the fractures, with inspection of the hip joint and preservation of the vascular supply.
Resumo:
Eccentric cycling, where the goal is to resist the pedals, which are driven by a motor, increases muscle strength and size in untrained subjects. We hypothesized that it could also be beneficial for athletes, particularly in alpine skiing, which involves predominantly eccentric contractions at longer muscle lengths. We investigated the effects of replacing part of regular weight training with eccentric cycling in junior male alpine skiers using a matched-pair design. Control subjects ( N=7) executed 1-h weight sessions 3 times per week, which included 4-5 sets of 4 leg exercises. The eccentric group ( N=8) performed only 3 sets, followed by continuous sessions on the eccentric ergometer for the remaining 20 min. After 6 weeks, lean thigh mass increased significantly only in the eccentric group. There was a groupxtime effect on squat-jump height favouring the eccentric group, which also experienced a 6.5% improvement in countermovement-jump height. The ability to finely modulate muscle force during variable eccentric cycling improved 50% (p=0.004) only in the eccentric group. Although eccentric cycling did not significantly enhance isometric leg strength, we believe it is beneficial for alpine skiers because it provides an efficient means for hypertrophy while closely mimicking the type of muscle actions encountered while skiing.