960 resultados para single-stranded DNA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process of immobilization of biological molecules is one of the most important steps in the construction of a biosensor. In the case of DNA, the way it exposes its bases can result in electrochemical signals to acceptable levels. The use of self-assembled monolayer that allows a connection to the gold thiol group and DNA binding to an aldehydic ligand resulted in the possibility of determining DNA hybridization. Immobilized single strand of DNA (ssDNA) from calf thymus pre-formed from alkanethiol film was formed by incubating a solution of 2-aminoethanothiol (Cys) followed by glutaraldehyde (Glu). Cyclic voltammetry (CV) was used to characterize the self-assembled monolayer on the gold electrode and, also, to study the immobilization of ssDNA probe and hybridization with the complementary sequence (target ssDNA). The ssDNA probe presents a well-defined oxidation peak at +0.158 V. When the hybridization occurs, this peak disappears which confirms the efficacy of the annealing and the DNA double helix performing without the presence of electroactive indicators. The use of SAM resulted in a stable immobilization of the ssDNA probe, enabling the hybridization detection without labels. This study represents a promising approach for molecular biosensor with sensible and reproducible results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A label-free DNA aptamer-based impedance biosensor for the detection of E. coli outer membrane proteins (OMPs) was developed. Two single stranded DNA sequences were tested as recognition elements and compared. The aptamer capture probes were immobilized, with and without 6-mercapto-1-hexanol (MCH) on a gold electrode. Each step of the modification process was characterized by Faradaic impedance spectroscopy (FIS). A linear relationship between the electron-transfer resistance (Ret) and E. coli OMPs concentration was demonstrated in a dynamic detection range of 1 × 10−7–2 × 10−6 M. Moreover, the aptasensor showed selectivity despite the presence of other possible water contaminates and could be regenerated under low pH condition. The developed biosensor shows great potential to be incorporated in a biochip and used for in situ detection of E. coli OMPs in water samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In principle, we should be glad that Eric Kmiec and his colleagues published in Science's STKE (1) a detailed experimental protocol of their gene repair method (2, 3). However, a careful reading of their contribution raises more doubts about the method. The research published in Science five years ago by Kmiec and his colleagues was said to demonstrate that chimeric RNA-DNA oligonucleotides could correct the mutation responsible for sickle cell anemia with 50% efficiency (4). Such a remarkable result prompted many laboratories to attempt to replicate the research or utilize the method on their own systems. However, if the method worked at all, which it rarely did, the achieved efficiency was usually lower by several orders of magnitude. Now, in the Science's STKE protocol, we are given crucial information about the method and why it is so important to utilize these expensive chimeric RNA-DNA constructs. In the introduction we are told that the RNA-DNA duplex is more stable than a DNA-DNA duplex and so extends the half-life of the complexes formed between the targeted DNA and the chimeric RNA-DNA oligonucleotides. This logical explanation, however, conflicts with the statement in the section entitled "Transfection with Oligonucleotides and Plasmid DNA" that Kmiec and colleagues have recently demonstrated that classical single-stranded DNA oligonucleotides with a few protective phosphothioate linkages have a "gene repair conversion frequency rivaling that of the RNA/DNA chimera". Indeed, the research cited for that result actually states that single-stranded DNA oligonucleotides are in fact several-fold more efficient (3.7-fold) than the RNA-DNA chimeric constructs (5). If that is the case, it raises the question of why Kmiec and colleagues emphasize the importance of the RNA in their original chimeric constructs. Their own new results show that modified single-stranded DNA oligonucleotides are more effective than the expensive RNA-DNA hybrids. Moreover, the current efficiency of the gene repair by RNA-DNA hybrids, according to Kmiec and colleagues in their recent paper is only 4×10-4 even after several hours of pre-selection permitting multiplification of bacterial cells with the corrected plasmid (5). This efficiency is much lower than the 50% value reported five years ago, but is assuredly much closer to the reality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During genetic recombination a heteroduplex joint is formed between two homologous DNA molecules. The heteroduplex joint plays an important role in recombination since it accommodates sequence heterogeneities (mismatches, insertions or deletions) that lead to genetic variation. Two Escherichia coli proteins, RuvA and RuvB, promote the formation of heteroduplex DNA by catalysing the branch migration of crossovers, or Holliday junctions, which link recombining chromosomes. We show that RuvA and RuvB can promote branch migration through 1800 bp of heterologous DNA, in a reaction facilitated by the presence of E.coli single-stranded DNA binding (SSB) protein. Reaction intermediates, containing unpaired heteroduplex regions bound by SSB, were directly visualized by electron microscopy. In the absence of SSB, or when SSB was replaced by a single-strand binding protein from bacteriophage T4 (gene 32 protein), only limited heterologous branch migration was observed. These results show that the RuvAB proteins, which are induced as part of the SOS response to DNA damage, allow genetic recombination and the recombinational repair of DNA to occur in the presence of extensive lengths of heterology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heteroduplex mobility assay, single-stranded conformation polymorphism and nucleotide sequencing were utilised to genotype human parvovirus B19 samples from Brazil and Paraguay. Ninety-seven serum samples were collected from individuals presenting with abortion or erythema infectiosum, arthropathies, severe anaemia and transient aplastic crisis; two additional skin samples were collected by biopsy. After the procedure, all clinical samples were classified as genotype 1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of ATP hydrolysis during the RecA-mediated recombination reaction is addressed in this paper. Recent studies indicated that the RecA-promoted DNA strand exchange between completely homologous double- and single-stranded DNA can be very efficient in the absence of ATP hydrolysis. In this work we demonstrate that the energy derived from the ATP hydrolysis is strictly needed to drive the DNA strand exchange through the regions where the interacting DNA molecules are not in a homologous register. Therefore, in addition to the role of the ATP hydrolysis in promoting the dissociation of RecA from the products of the recombination reaction, as described earlier, ATP hydrolysis also plays a crucial role in the actual process of strand exchange, provided that the lack of homologous register obstructs the process of branch migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three phosphatidylinositol-3-kinase-related protein kinases implement cellular responses to DNA damage. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia-telangiectasia mutated respond primarily to DNA double-strand breaks (DSBs). Ataxia-telangiectasia and RAD3-related (ATR) signals the accumulation of replication protein A (RPA)-covered single-stranded DNA (ssDNA), which is caused by replication obstacles. Stalled replication intermediates can further degenerate and yield replication-associated DSBs. In this paper, we show that the juxtaposition of a double-stranded DNA end and a short ssDNA gap triggered robust activation of endogenous ATR and Chk1 in human cell-free extracts. This DNA damage signal depended on DNA-PKcs and ATR, which congregated onto gapped linear duplex DNA. DNA-PKcs primed ATR/Chk1 activation through DNA structure-specific phosphorylation of RPA32 and TopBP1. The synergistic activation of DNA-PKcs and ATR suggests that the two kinases combine to mount a prompt and specific response to replication-born DSBs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homologous recombination is important for the repair of double-strand breaks during meiosis. Eukaryotic cells require two homologs of Escherichia coli RecA protein, Rad51 and Dmc1, for meiotic recombination. To date, it is not clear, at the biochemical level, why two homologs of RecA are necessary during meiosis. To gain insight into this, we purified Schizosaccharomyces pombe Rad51 and Dmc1 to homogeneity. Purified Rad51 and Dmc1 form homo-oligomers, bind single-stranded DNA preferentially, and exhibit DNA-stimulated ATPase activity. Both Rad51 and Dmc1 promote the renaturation of complementary single-stranded DNA. Importantly, Rad51 and Dmc1 proteins catalyze ATP-dependent strand exchange reactions with homologous duplex DNA. Electron microscopy reveals that both S. pombe Rad51 and Dmc1 form nucleoprotein filaments. Rad51 formed helical nucleoprotein filaments on single-stranded DNA, whereas Dmc1 was found in two forms, as helical filaments and also as stacked rings. These results demonstrate that Rad51 and Dmc1 are both efficient recombinases in lower eukaryotes and reveal closer functional and structural similarities between the meiotic recombinase Dmc1 and Rad51. The DNA strand exchange activity of both Rad51 and Dmc1 is most likely critical for proper meiotic DNA double-strand break repair in lower eukaryotes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process of DNA strand exchange during general genetic recombination is initiated within protein-stabilized synaptic filaments containing homologous regions of interacting DNA molecules. The RecA protein in bacteria and its analogs in eukaryotic organisms start this process by forming helical filamentous complexes on single-stranded or partially single-stranded DNA molecules. These complexes then progressively bind homologous double-stranded DNA molecules so that homologous regions of single- and double-stranded DNA molecules become aligned in register while presumably winding around common axis. The topological assay presented herein allows us to conclude that in synaptic complexes containing homologous single- and double-stranded DNA molecules, all three DNA strands have a helicity of approximately 19 nt per turn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Initiation of Bacillus subtilis bacteriophage SPP1 replication requires the phage-encoded genes 38, 39 and 40 products (G38P, G39P and G40P). G39P, which does not bind DNA, interacts with the replisome organiser, G38P, in the absence of ATP and with the ATP-activated hexameric replication fork helicase, G40P. G38P, which specifically interacts with the phage replication origin (oriL) DNA, does not seem to form a stable complex with G40P in solution. G39P when complexed with G40P-ATP inactivates the single-stranded DNA binding, ATPase and unwinding activities of G40P, and such effects are reversed by increasing amounts of G38P. Unwinding of a forked substrate by G40P-ATP is increased about tenfold by the addition of G38P and G39P to the reaction mixture. The specific protein-protein interactions between oriL-bound G38P and the G39P-G40P-ATPgammaS complex are necessary for helicase delivery to the SPP1 replication origin. Formation of G38P-G39P heterodimers releases G40P-ATPgammaS from the unstable oriL-G38P-G39P-G40P-ATPgammaS intermediate. G40P-ATPgammaS binds to the origin region, the uncomplexed G38P fraction remains bound to oriL, and the G38P-G39P heterodimer is lost from the complex. We demonstrate that G39P is a component of an oligomeric nucleoprotein complex which plays an important role in the initiation of SPP1 replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stalled replication forks are sources of genetic instability. Multiple fork-remodeling enzymes are recruited to stalled forks, but how they work to promote fork restart is poorly understood. By combining ensemble biochemical assays and single-molecule studies with magnetic tweezers, we show that SMARCAL1 branch migration and DNA-annealing activities are directed by the single-stranded DNA-binding protein RPA to selectively regress stalled replication forks caused by blockage to the leading-strand polymerase and to restore normal replication forks with a lagging-strand gap. We unveil the molecular mechanisms by which RPA enforces SMARCAL1 substrate preference. E. coli RecG acts similarly to SMARCAL1 in the presence of E. coli SSB, whereas the highly related human protein ZRANB3 has different substrate preferences. Our findings identify the important substrates of SMARCAL1 in fork repair, suggest that RecG and SMARCAL1 are functional orthologs, and provide a comprehensive model of fork repair by these DNA translocases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary: Adeno-associated virus type 2 (AAV2) is a small virus containing single-stranded DNA of approximately 4.7kb in size. Both ends of the viral genome are flanked with inverted terminal repeat sequences (ITRs), which serve as primers for viral replication. Previous work in our laboratory has shown that AAV2 DNA with ultraviolet radiation-generated crosslinks (UV-AAV2) provokes a DNA damage response in the host cell by mimicking a stalled replication fork. Infection of cells with UV-AAV2 leads to a p53-and Chk1-mediated cell cycle arrest at the G2/M border of the cell cycle. However, tumour cells lacking the tumour suppressor protein p53 cannot sustain this arrest and enter a prolonged impaired mitosis, the outcome of which is cell death. The aim of my thesis was to investigate how UV-inactivated AAV2 kilts p53-deficient cancer cells. I found that the UV-AAV2-induced DNA damage signalling induces centriole overduplication in infected cells. The virus is able to uncouple the centriole duplication cycle from the cell cycle, leading to amplified centrosome numbers. Chk1 colocalises with centrosomes in the infected cells and the centrosome overduplication is dependent on the presence of Chk1, as well as on the activities of ATR and Cdk kinases and on the G2 arrest. The UV-AAV2-induced DNA damage signalling inhibits the degradation of cyclin B 1 and securin by the anaphase promoting complex, suggesting that the spindle checkpoint is activated in these mitotic cells. Interference with the spindle checkpoint components Mad2 and BubR1 revealed that the UV-AAV2-provoked mitotic catastrophe occurs independently of spindle checkpoint function, This work shows that, in the p53 deficient cells, UV-AAV2 triggers mitotic catastrophe associated with a dramatic Chk1-dependent overduplication of centrioles and the consequent formation of multiple spindle poles in mitosis. Résumé Le virus associé à l'adénovirus type 2 (AAV2) est un petit virus contenant un simple brin d'ADN d'environ 4.7kb. Des expériences antérieures dans notre laboratoire ont montré que les liens intramoléculaires sur l'ADN de AAV2 provoqués paz l'irradiation aux ultraviolets (UV) ressemblent à une fourche de réplication bloquée, ce qui provoque une réponse aux dommages à l'ADN dans la cellule hôte. L'infection des cellules avec UV-AAV2 résulte en un arrêt du cycle cellulaire à la transition G2/M entraîné par les protéines ATR et Chk1. Cependant, les cellules tumorales auxquelles il manque le suppresseur de tumeur p53 ne peuvent pas tenir cet arrêt et entrent dans une mitose anormale et prolongée qui se terminera par la mort cellulaire. Le but de ma thèse était d'étudier comment l'AAV2 inactivé par l'irradiation UV tue les cellules cancéreuses n'ayant pas p53. Je montre ici que le signal de dommages à l'ADN induit par UV-AAV2 génère une surduplication des centrioles dans les cellules infectées. Le virus est capable de dissocier le cycle de duplication du centriole du cycle cellulaire ce qui crée un nombre amplifié de centrosomes. Chk1 est co-localisé avec le centrosome dans les cellules infectées et la swduplication du centrosome est dépendante de la présence de Chk1, de l'activité des kinases ATR et Cdk et de l'arrêt en G2 de la cellule. Le signal d'ADN endommagé induit par UV-AAV2 réprime la dégradation des protéines cycline B1 et securine par le complexe promoteur de l'anaphase (APC), ce qui suggère que le point de contrôle du fuseau mitotique est activé dans ces cellules en mitose. L'étude d'interférence avec des éléments du point de contrôle du fuseau mitotique, Mad2 et BubR1, a révélé que la catastrophe mitotique provoquée paz UV-AAV2 survient indépendamment du point de contrôle du fuseau mitotique. Ce travail montre que dans les cellules déficientes en p53, UV-AAV2 induit une catastrophe mitotique associée à une surduplication des centrioles dépendant de Chk1 et ayant pour conséquence dramatique la formation de multiples fuseaux mitotiques dans la cellule en mitose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monoubiquitination of the Fanconi anaemia protein FANCD2 is a key event leading to repair of interstrand cross-links. It was reported earlier that FANCD2 co-localizes with NBS1. However, the functional connection between FANCD2 and MRE11 is poorly understood. In this study, we show that inhibition of MRE11, NBS1 or RAD50 leads to a destabilization of FANCD2. FANCD2 accumulated from mid-S to G2 phase within sites containing single-stranded DNA (ssDNA) intermediates, or at sites of DNA damage, such as those created by restriction endonucleases and laser irradiation. Purified FANCD2, a ring-like particle by electron microscopy, preferentially bound ssDNA over various DNA substrates. Inhibition of MRE11 nuclease activity by Mirin decreased the number of FANCD2 foci formed in vivo. We propose that FANCD2 binds to ssDNA arising from MRE11-processed DNA double-strand breaks. Our data establish MRN as a crucial regulator of FANCD2 stability and function in the DNA damage response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is aimed at studying the adsorption mechanism of short chain 20-mer pyrimidinic homoss-DNA (oligodeoxyribonucleotide, ODN: polyC(20) and polyT(20)) onto CNT by reflectometry. To analyze the experimental data, the effective-medium theory using the Bruggemann approximation represents a Suitable optical model to account for the surface properties (roughness, thickness, and optical constants) and the size of the adsorbate. Systematic information about the involved interactions is obtained by changing the physicochemical properties of the system. Hydrophobic and electrostatic interactions are evaluated by comparing the adsorption oil hydrophobic CNT and oil hydrophilic silica and by Modulating the ionic Strength With and without Mg(2+). The ODN adsorption process oil CNT is driven by hydrophobic interactions only when the electrostatic repulsion is Suppressed. The adsorption mode results in ODN molecules in a side-on orientation with the bases (nonpolar region) toward the surface. This unfavorable orientation is partially reverse by adding Mg(2+). On the other hand, the adsorption oil silica is dominated by the strong repulsive electrostatic interaction that is screened at high ionic strength or mediated by Mg(2+). The cation-mediated process induces the interaction of the phosphate backbone (polar region) with the surface, leaving the bases free for hybridization. Although the general adsorption behavior of the pyrimidine bases is the same, polyC(20) presents higher affinity for the CNT Surface due to its acid-base properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 1952, Dwyer and coworkers began testing a series of metal complexes for potential inhibition of cancer cell proliferation in animals.[l] The complexes tested were unsuitable for such studies due to their high toxicity. Therefore, no further work was done on the project. However, in 1965, Rosenberg and coworkers revisited the possibility of potential metal-based drugs. Serendipitously, they discovered that cis-diamminedichloroplatinum(lI) (cisplatin) inhibits cell division in E. coli.[2] Further studies of this and other platinum compounds revealed inhibition of tumor cell lines sarcoma 180 and leukemia LI2l0 in mice.[l] Cisplatin was approved by the Food and Drug Administration in 1970 as a chemical chemotherapeutic agent in the treatment of cancer. The drug has primarily been used in the treatment of testicular and ovarian cancers, although the powerful chemotherapeutic properties of the compound indicate use against a variety of other cancers.[3] The toxicity of this compound, however, warrants the development of other metal-based potential antitumor agents. The success of cisplatin, a transition-metal-based chemotherapeutic, opened the doors to a host of research on the antitumor effects of other transition-metal complexes. Beginning in the 1970s, researchers looked to rhodium for potential use in antitumor complexes. Dirhodium complexes with bridging equatorial ligands (Figure I) were the primary focus for this research. The overwhelming majority of these complexes were dirhodium(II) carboxylate complexes, containing two rhodium(II) centers, four equatorial ligands in a lantero formation around the metal center, and an axial ligand on either end. The family of complexes in Figure 1 will be referred to as dirhodium(II) carboxylate complexes. The dirhodium centers are each d? with a metal-metal bond between them. Although d? atoms are paramagnetic, the two unpaired electrons pair to make the complex diamagnetic. The basic formula of the dirhodium(lI) carboxylate complexes is Rh?(RCOO)?(L)? with R being methyl, ethyl, propyl, or butyl groups and L being water or the solvent in which the complex was crystalized. Of these dirbodium(II) carboxylate complexes, our research focuses on Rb la and two other similar complexes Rh2 and Rh3 (Figure 2). Rh2 is an activated form of Rhla, with four acetonitrile groups in place of two of the bidentate acetate ligands. Rh3 is similar to Rhla, with trifluoromethyl groups in place of the methyl groups on the acetate ligands.