952 resultados para single channel algorithm
Resumo:
A Ca2+ channel from root-tip endomembranes of garden cress (Lepidium sativum L.) (LCC1) was characterized using the planar lipid-bilayer technique. Investigation of single-channel recordings revealed that LCC1 is voltage gated and strongly rectifying. In symmetrical 50 mm CaCl2 solutions, the single-channel conductance was 24 picosiemens. LCC1 showed a moderate selectivity for Ca2+ over K+ (9.4:1) and was permeable for a range of divalent cations (Ca2+, Ba2+, and Sr2+). In contrast to Bryonia dioica Ca2+ channel 1, a Ca2+-selective channel from the endoplasmic reticulum of touch-sensitive tendrils, LCC1 showed no bursting channel activity and had a low open probability and mean open time (2.83 ms at 50 mV). Inhibitor studies demonstrated that LCC1 is blocked by micromolar concentrations of erythrosin B (inhibitor concentration for 50% inhibition [IC50] = 1.8 μm) and the trivalent cations La3+ (IC50 = 5 μm) and Gd3+ (IC50 = 10 μm), whereas verapamil showed no blocking effect. LCC1 may play an important role in the regulation of the cytoplasmic free Ca2+ concentration in root-tip and/or root-cap cells. The question of whether this ion channel is part of the gravitropic signal transduction pathway deserves further investigation.
Resumo:
What do epilepsy, migraine headache, deafness, episodic ataxia, periodic paralysis, malignant hyperthermia, and generalized myotonia have in common? These human neurological disorders can be caused by mutations in genes for ion channels. Many of the channel diseases are “paroxysmal disorders” whose principal symptoms occur intermittently in individuals who otherwise may be healthy and active. Some of the ion channels that cause human neurological disease are old acquaintances previously cloned and extensively studied by channel specialists. In other cases, however, disease-gene hunts have led the way to the identification of new channel genes. Progress in the study of ion channels has made it possible to analyze the effects of human neurological disease-causing channel mutations at the level of the single channel, the subcellular domain, the neuronal network, and the behaving organism.
Resumo:
A conducting bridge of a single hydrogen molecule between Pt electrodes is formed in a break junction experiment. It has a conductance near the quantum unit, G0=2e2∕h, carried by a single channel. Using point-contact spectroscopy three vibration modes are observed and their variation upon isotope substitution is obtained. The stretching dependence for each of the modes allows uniquely classifying them as longitudinal or transversal modes. The interpretation of the experiment in terms of a Pt-H2-Pt bridge is verified by density-functional theory calculations for the stability, vibrational modes, and conductance of the structure.
Resumo:
protein modulation of neuronal nicotinic acetylcholine receptor ( nAChR) channels in rat intrinsic cardiac ganglia was examined using dialyzed whole-cell and excised membrane patch-recording configurations. Cell dialysis with GTP gamma S increased the agonist affinity of nAChRs, resulting in a potentiation of nicotine-evoked whole-cell currents at low concentrations. ACh- and nicotine-evoked current amplitudes were increased approximately twofold in the presence of GTP gamma S. In inside-out membrane patches, the open probability (NPo) of nAChR-mediated unitary currents was reversibly increased fourfold after bath application of 0.2mM GTP gamma S relative to control but was unchanged in the presence of GDP gamma S. The modulation of nAChR-mediated whole- cell currents was agonist specific; currents evoked by the cholinergic agonists ACh, nicotine, and 1,1-dimethyl-4-phenylpiperazinium iodide, but not cytisine or choline, were potentiated in the presence of GTP gamma S. The direct interaction between G-protein subunits and nAChRs was examined by bath application of either G(o)alpha or G beta gamma subunits to inside-out membrane patches and in glutathione S-transferase pull-down and coimmunoprecipitation experiments. Bath application of 50 nM G beta gamma increased the open probability of ACh- activated single-channel currents fivefold, whereas G(o)alpha( 50 nM) produced no significant increase in NPo. Neuronal nAChR subunits alpha 3-alpha 5 and alpha 2 exhibited a positive interaction with G(o)alpha and G beta gamma, whereas beta 4 and alpha 7 failed to interact with either of the G-protein subunits. These results provide evidence for a direct interaction between nAChR and G-protein subunits, underlying the increased open probability of ACh-activated single-channel currents and potentiation of nAChR-mediated whole-cell currents in parasympathetic neurons of rat intrinsic cardiac ganglia.
Resumo:
The thesis presents new methodology and algorithms that can be used to analyse and measure the hand tremor and fatigue of surgeons while performing surgery. This will assist them in deriving useful information about their fatigue levels, and make them aware of the changes in their tool point accuracies. This thesis proposes that muscular changes of surgeons, which occur through a day of operating, can be monitored using Electromyography (EMG) signals. The multi-channel EMG signals are measured at different muscles in the upper arm of surgeons. The dependence of EMG signals has been examined to test the hypothesis that EMG signals are coupled with and dependent on each other. The results demonstrated that EMG signals collected from different channels while mimicking an operating posture are independent. Consequently, single channel fatigue analysis has been performed. In measuring hand tremor, a new method for determining the maximum tremor amplitude using Principal Component Analysis (PCA) and a new technique to detrend acceleration signals using Empirical Mode Decomposition algorithm were introduced. This tremor determination method is more representative for surgeons and it is suggested as an alternative fatigue measure. This was combined with the complexity analysis method, and applied to surgically captured data to determine if operating has an effect on a surgeon’s fatigue and tremor levels. It was found that surgical tremor and fatigue are developed throughout a day of operating and that this could be determined based solely on their initial values. Finally, several Nonlinear AutoRegressive with eXogenous inputs (NARX) neural networks were evaluated. The results suggest that it is possible to monitor surgeon tremor variations during surgery from their EMG fatigue measurements.
Resumo:
We experimentally demonstrate the use of full-field electronic dispersion compensation (EDC) to achieve a bit error rate of 5 x 10(-5) at 22.3 dB optical signal-to-noise ratio for single-channel 10 Gbit/s on-off keyed signal after transmission over 496 km field-installed single-mode fibre with an amplifier spacing of 124 km. This performance is achieved by designing the EDC so as to avoid electronic amplification of the noise content of the signal during full-field reconstruction. We also investigate the tolerance of the system to key signal processing parameters, and numerically demonstrate that single-channel 2160 km single mode fibre transmission without in-line optical dispersion compensation can be achieved using this technique with 80 km amplifier spacing and optimized system parameters.
Resumo:
We propose - as a modification of the optical (RF) pilot scheme -a balanced phase modulation between two polarizations of the optical signal in order to generate correlated equalization enhanced phase noise (EEPN) contributions in the two polarizations. The method is applicable for n-level PSK system. The EEPN can be compensated, the carrier phase extracted and the nPSK signal regenerated by complex conjugation and multiplication in the receiver. The method is tested by system simulations in a single channel QPSK system at 56 Gb/s system rate. It is found that the conjugation and multiplication scheme in the Rx can mitigate the EEPN to within 1/2 orders of magnitude. Results are compared to using the Viterbi-Viterbi algorithm to mitigate the EEPN. The latter method improves the sensitivity more than two orders of magnitude. Important novel insight into the statistical properties of EEPN is identified and discussed in the paper. © 2013 Optical Society of America.
Reductions of peak-to-average power ratio and optical beat interference in cost-effective OFDMA-PONs
Resumo:
The peak-to-average power ratio (PAPR) and optical beat interference (OBI) effects are examined thoroughly in orthogonal frequency-division multiplexing access (OFDMA)-passive optical networks (PONs) at a signal bit rate up to ∼ 20 Gb/s per channel using cost-effective intensity-modulation and direct-detection (IM/DD). Single-channel OOFDM and upstream multichannel OFDM-PONs are investigated for up to six users. A number of techniques for mitigating the PAPR and OBI effects are presented and evaluated including adaptive-loading algorithms such as bit/power-loading, clipping for PAPR reduction, and thermal detuning (TD) for the OBI suppression. It is shown that the bit-loading algorithm is a very efficient PAPR reduction technique by reducing it at about 1.2 dB over 100 Km of transmission. It is also revealed that the optimum method for suppressing the OBI is the TD + bit-loading. For a targeted BER of 1 × 10-3, the minimum allowed channel spacing is 11 GHz when employing six users. © 2013 Springer Science+Business Media New York.
Resumo:
We investigate the influence of couplings among continuum states in collisions of weakly bound nuclei. For this purpose, we compare cross sections for complete fusion, breakup, and elastic scattering evaluated by continuum discretized coupled channel (CDCC) calculations, including and not including these couplings. In our study, we discuss this influence in terms of the polarization potentials that reproduces the elastic wave function of the coupled channel method in single channel calculations. We find that the inclusion of couplings among continuum states renders the real part of the polarization potential more repulsive, whereas it leads to weaker absorption to the breakup channel. We show that the noninclusion of continuum-continuum couplings in CDCC calculations may lead to qualitative and quantitative wrong conclusions.
Resumo:
A biotin group was covalently attached to the C terminus of gramicidin A (gA) through a linker arm comprising a glycine residue with either one (gAXB) or two caproyl groups (gAXXB). High-resolution two-dimensional NMR spectroscopy was used to determine the structure of these modified gA analogues and [Lys(16)]gramicidin A (gA-Lys) in sodium dodecyl-d(25) sulphate micelles. Gated gA ion channels based on linking a receptor group to these gA analogues have been used recently as a component in a sensing device. The conformations of the gA backbones and amino acid side chains of lysinated gA and biotinylated gA in detergent micelles were found to be almost identical to that of native gA, i.e. that of an N-terminal to N-terminal (head to head) dimer formed by two right-handed, single-stranded beta(6.3) helices. The biotin tail of the gAXB and gAXXB and the lysine extremity of gA-Lys appeared to lie outside the micelle. Thus it appears that the covalent attachment of functional groups to the C terminus of gA does not disrupt the peptide's helical configuration. Further, single channel measurements of all three gA analogues showed that functioning ion channels were preserved within a membrane environment. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
1. Influx of calcium via voltage-dependent calcium channels during the action potential lends to increases in cytosolic calcium that can initiate a number of physiological processes. One of these is the activation of potassium currents on the plasmalemma. These calcium-activated potassium currents contribute to action potential repolarization and are largely responsible for the phenomenon of spike frequency adaptation. This refers to the progressive slowing of the frequency of discharge of action potentials during sustained injection of depolarizing current. In some cell types, this adaptation is so marked that despite the presence of depolarizing current, only a single spike (or a few spikes) is initiated, Following cessation of current injection, slow deactivation of calcium-activated potassium currents is also responsible for the prolonged hyperpolarization that often follows, 2. A number of macroscopic calcium-activated potassium currents that can be separated on the basis of kinetic and pharmacological criteria have been described in mammalian neurons. At the single channel level, several types of calcium-activated potassium channels also have been characterized. While for some macroscopic currents the underlying:single channels have been unambiguously defined, for other currents the identity of the underlying channels is not clear. 3. In the present review we describe the properties of the known types of calcium-activated potassium currents in mammalian neurons and indicate the relationship between macroscopic currents and particular single channels.
Resumo:
In many cell types rises in cytosolic calcium, either due to influx from the extracellular space, or by release from an intracellular store activates calcium dependent potassium currents on the plasmalemma. In neurons, these currents are largely activated following calcium influx via voltage gated calcium channels active during the action potentials. Three types of these currents are known: I-c. I-AHP and I-sAHP. These currents can be distinguished by clear differences in their pharmacology and kinetics. Activation of these potassium currents modulates action potential time course and the repetitive firing properties of neurons. Single channel studies have identified two types of calcium-activated potassium channel which can also be separated on biophysical and pharmacological grounds and have been named BK and SK channels. It is now clear that BK channels underlie Ic whereas SK channels underlie I-AHP. The identity of the channels underlying I-sAHP are not known. In this review, we discuss the properties of the different types of calcium-activated potassium channels and the relationship between these channels and the macroscopic currents present in neurons. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
1 The functional coupling of B-2-adrenoceptors (beta (2)-ARs) to murine L-type Ca2+ current (I-Ca(L)) was investigated with two different approaches. The beta (2)-AR signalling cascade was activated either with the beta (2)-AR selective agonist zinterol (myocytes from wild-type mice), or by spontaneously active, unoccupied beta (2)-ARs (myocytes from TG4 mice with 435 fold overexpression of human beta (2)-ARs). Ca2+ and Ba2+ currents were recorded in the whole-cell and cell-attached configuration of the patch- clamp technique, respectively. 2 Zinterol (10 muM) significantly increased I-Ca(L) amplitude of wild-type myocytes by 19+/-5%, and this effect was markedly enhanced after inactivation of Gi-proteins with pertussis-toxin (PTX; 76+/-13% increase). However, the effect of zinterol was entirely mediated by the beta (1)-AR subtype, since it was blocked by the beta (1)-AR selective antagonist CGP 20712A (300 nM). The beta (2)-AR selective antagonist ICI 118,551 (50 nM) did not affect the response of I-Ca(L) to zinterol. 3 In myocytes with beta (2)-AR overexpression I-Ca(L) was not stimulated by the activated signalling cascade. On the contrary, I-Ca(L) was lower in TG4 myocytes and a significant reduction of single-channel activity was identified as a reason for the lower whole-cell I-Ca(L). The beta (2)-AR inverse agonist ICI 118,551 did not further decrease I-Ca(L). PTX-treatment increased current amplitude to values found in control myocytes. 4 In conclusion, there is no evidence for beta (2)-AR mediated increases of I-Ca(L) in wild-type mouse ventricular myocytes. Inactivation of Gi-proteins does not unmask beta (2)-AR responses to zinterol, but augments beta (1)-AR mediated increases of I-Ca(L). In the mouse model of beta (2)-AR overexpression I-Ca(L) is reduced due to tonic activation of Gi-proteins.
Large-conductance calcium-activated potassium channels in neonatal rat intracardiac ganglion neurons
Resumo:
The properties of single Ca2+-activated K+ (BK) channels in neonatal rat intracardiac neurons were investigated using the patch-clamp recording technique. In symmetrical 140 mM K+, the single-channel slope conductance was linear in the voltage range -60/+60 mV. and was 207+/-19 pS. Na+ ions were not measurably permeant through the open channel. Channel activity increased with the cytoplasmic free Ca2+ concentration ([Ca2+],) with a Hill plot giving a half-saturating [Ca2+] (K-0.5) of 1.35 muM and slope of congruent to3. The BK channel was inhibited reversibly by external tetraethylammonium (TEA) ions, charybdotoxin, and quinine and was resistant to block by 4-aminopyridine and apamin. Ionomycin (1-10 muM) increased BK channel activity in the cell-attached recording configuration. The resting activity was consistent with a [Ca2+](i)
Resumo:
Few analytical methods are currently available for determination of apomorphine, the active substance of a new oral formulation used in the treatment of erectile dysfunction. In this way a flow injection electrochemical method (FIA-EC) was developed for its quantification and applied to pharmaceutical dosage forms. Based in previous findings regarding the stability of apomorphine in borate buffer and after optimization of several analytical parameters a single channel flow injection manifold was set up that enables the determination of this drug over the concentration range of 3 to 16 µmol L-1 with a detection limit of 0.5 µmol L-1 at a sampling rateof 90 h-1. The simplicity and rapidity of the FIA-EC method used, its reproducibility and sensitivity make it suitable for quality control of pharmaceutical preparations of apomorphine intended for clinical use and research.