932 resultados para settlement pattern
Resumo:
Many data mining techniques have been proposed for mining useful patterns in databases. However, how to effectively utilize discovered patterns is still an open research issue, especially in the domain of text mining. Most existing methods adopt term-based approaches. However, they all suffer from the problems of polysemy and synonymy. This paper presents an innovative technique, pattern taxonomy mining, to improve the effectiveness of using discovered patterns for finding useful information. Substantial experiments on RCV1 demonstrate that the proposed solution achieves encouraging performance.
Resumo:
Integral attacks are well-known to be effective against byte-based block ciphers. In this document, we outline how to launch integral attacks against bit-based block ciphers. This new type of integral attack traces the propagation of the plaintext structure at bit-level by incorporating bit-pattern based notations. The new notation gives the attacker more details about the properties of a structure of cipher blocks. The main difference from ordinary integral attacks is that we look at the pattern the bits in a specific position in the cipher block has through the structure. The bit-pattern based integral attack is applied to Noekeon, Serpent and present reduced up to 5, 6 and 7 rounds, respectively. This includes the first attacks on Noekeon and present using integral cryptanalysis. All attacks manage to recover the full subkey of the final round.
Resumo:
In 2005, the Association of American Publishers (AAP) and the Authors Guild (AG) sued Google for ‘massive copyright infringement’ for the mass digitization of books for the Google Book Search Project. In 2008, the parties reached a settlement, pending court approval. If approved, the settlement could have far-reaching consequences for authors, libraries, educational institutions and the reading public. In this article, I provide an overview of the Google Book Search Settlement. Firstly, I explain the Google Book Search Project, the legal questions raised by the Project and the lawsuit brought against Google. Secondly, I examine the terms of the Settlement Agreement, including what rights were granted between the parties and what rights were granted to the general public. Finally, I consider the implications of the settlement for Australia. The Settlement Agreement, and consequently the broader scope of the Google Book Search Project, is currently limited to the United States. In this article I consider whether the Project could be extended to Australia at a later date, how Google might go about doing this, and the implications of such an extension under the Copyright Act 1968 (Cth). I argue that without prior agreements with rightholders, our limited exceptions to copyright infringement mean that Google is unlikely to be able to extend the full scope of the Project to Australia without infringing copyright.
Resumo:
The over representation of novice drivers in crashes is alarming. Research indicates that one in five drivers’ crashes within their first year of driving. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the drive. This paper presents a system that evaluates the data stream acquired from multiple in-vehicle sensors (acquired from Driver Vehicle Environment-DVE) using fuzzy rules and classifies the driving manoeuvres (i.e. overtake, lane change and turn) as low risk or high risk. The fuzzy rules use parameters such as following distance, frequency of mirror checks, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvre to assess risk. The fuzzy rules to estimate risk are designed after analysing the selected driving manoeuvres performed by driver trainers. This paper focuses mainly on the difference in gaze pattern for experienced and novice drivers during the selected manoeuvres. Using this system, trainers of novice drivers would be able to empirically evaluate and give feedback to the novice drivers regarding their driving behaviour.
Resumo:
This paper provides an interim report of a large empirical evaluation study in progress. An intervention was implemented to evaluate the effectiveness of the Pattern and Structure Mathematical Awareness Program (PASMAP) on Kindergarten students’ mathematical development. Four large schools (two from Sydney and two from Brisbane), 16 teachers and their 316 students participated in the first phase of a 2-year longitudinal study. Eight of 16 classes implemented the PASMAP program over three school terms. This paper provides an overview of key aspects of the intervention, and preliminary analysis of the impact of PASMAP on students’ representation, abstraction and generalisation of mathematical ideas.
Resumo:
In order to examine time allocation patterns within household-level trip-chaining, simultaneous doubly-censored Tobit models are applied to model time-use behavior within the context of household activity participation. Using the entire sample and a sub-sample of worker households from Tucson's Household Travel Survey, two sets of models are developed to better understand the phenomena of trip-chaining behavior among five types of households: single non-worker households, single worker households, couple non-worker households, couple one-worker households, and couple two-worker households. Durations of out-of-home subsistence, maintenance, and discretionary activities within trip chains are examined. Factors found to be associated with trip-chaining behavior include intra-household interactions with the household types and their structure and household head attributes.
Resumo:
Before 2001, most Africans immigrating to Australia were white South Africans and Zimbabweans who arrived as economic and family-reunion migrants (Cox, Cooper & Adepoju, 1999). Black African communities are a more recent addition to the Australian landscape, with most entering Australia as refugees after 2001. African refugees are a particularly disadvantaged immigrant group, which the Department of Immigration and Multicultural Affairs (in the Community Relations Commission of New South Wales, 2006) suggests require high levels of settlement support (p.23). Decision makers and settlement service providers need to have settlement data on the communities so that they can be effective in planning, budgeting and delivering support where it is most needed. Settlement data are also useful for determining the challenges that these communities face in trying to establish themselves in resettlement. There has been no verification of existing secondary data sources, however, or previous formal study of African refugee settlement geography in Southeast Queensland. This research addresses the knowledge gap by using a mixed-method approach to identify and describe the distribution and population size of eight African communities in Southeast Queensland, examine secondary migration patterns in these communities and assess the relationship between these geographic features and housing, a critical factor in successful settlement. Significant discrepancies exist between the primary data gathered in the study and existing secondary data relating to population size and distribution of the communities. Results also reveal a tension between the socio-cultural forces and the housing and economic imperatives driving secondary migration in the communities, and a general lack of engagement by African refugees with structured support networks. These findings have a wide range of implications for policy and for groups that provide settlement support to these communities.
Resumo:
The present rate of technological advance continues to place significant demands on data storage devices. The sheer amount of digital data being generated each year along with consumer expectations, fuels these demands. At present, most digital data is stored magnetically, in the form of hard disk drives or on magnetic tape. The increase in areal density (AD) of magnetic hard disk drives over the past 50 years has been of the order of 100 million times, and current devices are storing data at ADs of the order of hundreds of gigabits per square inch. However, it has been known for some time that the progress in this form of data storage is approaching fundamental limits. The main limitation relates to the lower size limit that an individual bit can have for stable storage. Various techniques for overcoming these fundamental limits are currently the focus of considerable research effort. Most attempt to improve current data storage methods, or modify these slightly for higher density storage. Alternatively, three dimensional optical data storage is a promising field for the information storage needs of the future, offering very high density, high speed memory. There are two ways in which data may be recorded in a three dimensional optical medium; either bit-by-bit (similar in principle to an optical disc medium such as CD or DVD) or by using pages of bit data. Bit-by-bit techniques for three dimensional storage offer high density but are inherently slow due to the serial nature of data access. Page-based techniques, where a two-dimensional page of data bits is written in one write operation, can offer significantly higher data rates, due to their parallel nature. Holographic Data Storage (HDS) is one such page-oriented optical memory technique. This field of research has been active for several decades, but with few commercial products presently available. Another page-oriented optical memory technique involves recording pages of data as phase masks in a photorefractive medium. A photorefractive material is one by which the refractive index can be modified by light of the appropriate wavelength and intensity, and this property can be used to store information in these materials. In phase mask storage, two dimensional pages of data are recorded into a photorefractive crystal, as refractive index changes in the medium. A low-intensity readout beam propagating through the medium will have its intensity profile modified by these refractive index changes and a CCD camera can be used to monitor the readout beam, and thus read the stored data. The main aim of this research was to investigate data storage using phase masks in the photorefractive crystal, lithium niobate (LiNbO3). Firstly the experimental methods for storing the two dimensional pages of data (a set of vertical stripes of varying lengths) in the medium are presented. The laser beam used for writing, whose intensity profile is modified by an amplitudemask which contains a pattern of the information to be stored, illuminates the lithium niobate crystal and the photorefractive effect causes the patterns to be stored as refractive index changes in the medium. These patterns are read out non-destructively using a low intensity probe beam and a CCD camera. A common complication of information storage in photorefractive crystals is the issue of destructive readout. This is a problem particularly for holographic data storage, where the readout beam should be at the same wavelength as the beam used for writing. Since the charge carriers in the medium are still sensitive to the read light field, the readout beam erases the stored information. A method to avoid this is by using thermal fixing. Here the photorefractive medium is heated to temperatures above 150�C; this process forms an ionic grating in the medium. This ionic grating is insensitive to the readout beam and therefore the information is not erased during readout. A non-contact method for determining temperature change in a lithium niobate crystal is presented in this thesis. The temperature-dependent birefringent properties of the medium cause intensity oscillations to be observed for a beam propagating through the medium during a change in temperature. It is shown that each oscillation corresponds to a particular temperature change, and by counting the number of oscillations observed, the temperature change of the medium can be deduced. The presented technique for measuring temperature change could easily be applied to a situation where thermal fixing of data in a photorefractive medium is required. Furthermore, by using an expanded beam and monitoring the intensity oscillations over a wide region, it is shown that the temperature in various locations of the crystal can be monitored simultaneously. This technique could be used to deduce temperature gradients in the medium. It is shown that the three dimensional nature of the recording medium causes interesting degradation effects to occur when the patterns are written for a longer-than-optimal time. This degradation results in the splitting of the vertical stripes in the data pattern, and for long writing exposure times this process can result in the complete deterioration of the information in the medium. It is shown in that simply by using incoherent illumination, the original pattern can be recovered from the degraded state. The reason for the recovery is that the refractive index changes causing the degradation are of a smaller magnitude since they are induced by the write field components scattered from the written structures. During incoherent erasure, the lower magnitude refractive index changes are neutralised first, allowing the original pattern to be recovered. The degradation process is shown to be reversed during the recovery process, and a simple relationship is found relating the time at which particular features appear during degradation and recovery. A further outcome of this work is that the minimum stripe width of 30 ìm is required for accurate storage and recovery of the information in the medium, any size smaller than this results in incomplete recovery. The degradation and recovery process could be applied to an application in image scrambling or cryptography for optical information storage. A two dimensional numerical model based on the finite-difference beam propagation method (FD-BPM) is presented and used to gain insight into the pattern storage process. The model shows that the degradation of the patterns is due to the complicated path taken by the write beam as it propagates through the crystal, and in particular the scattering of this beam from the induced refractive index structures in the medium. The model indicates that the highest quality pattern storage would be achieved with a thin 0.5 mm medium; however this type of medium would also remove the degradation property of the patterns and the subsequent recovery process. To overcome the simplistic treatment of the refractive index change in the FD-BPM model, a fully three dimensional photorefractive model developed by Devaux is presented. This model shows significant insight into the pattern storage, particularly for the degradation and recovery process, and confirms the theory that the recovery of the degraded patterns is possible since the refractive index changes responsible for the degradation are of a smaller magnitude. Finally, detailed analysis of the pattern formation and degradation dynamics for periodic patterns of various periodicities is presented. It is shown that stripe widths in the write beam of greater than 150 ìm result in the formation of different types of refractive index changes, compared with the stripes of smaller widths. As a result, it is shown that the pattern storage method discussed in this thesis has an upper feature size limit of 150 ìm, for accurate and reliable pattern storage.