899 resultados para service life


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Property management requires an understanding of infrastructure management, service life planning and quality management. Today, people are beginning to realize that effective property management in high-rise residential property can sustain the property value and maintaining high returns on their investment. The continuous growth of high-rise residential properties indicates that there is a need for an effective property management system to provide a sustainable high-rise residential property development. As intensive as these studies are, they do not attempt to investigate the correlation between property management systems with the trends of Malaysia high-rise residential property development. By examining the trends and scenario of Malaysia high-rise residential property development, this paper aims to gain an understanding of impacts from the effectiveness of property management in this scope area. Findings from this scoping paper will assist in providing a greater understanding and possible solutions for the current Malaysian property management systems for the expanding high-rise residential unit market. With current high rise units in excess of 1.3 million and increasing, the need for more cost effective management systems are of highly important to the Malaysian Property Industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An experimental laboratory investigation was carried out to assess the structural adequacy of a disused PHO Class Flat Bottom Rail Wagon (FRW) for a single lane low volume road bridge application as per the design provisions of the Australian Bridge Design Standard AS 5100(2004). The investigation also encompassed a review into the risk associated with the pre-existing damage in wagons incurred during their service life on rail. The main objective of the laboratory testing of the FRW was to physically measure its performance under the same applied traffic loading it would be required to resist as a road bridge deck. In order to achieve this a full width (5.2m) single lane, single span (approximately 10m), simply supported bridge would be required to be constructed and tested in a structural laboratory. However, the available clear spacing between the columns of the loading portal frame encountered within the laboratory was insufficient to accommodate the 5.2m wide bridge deck excluding clearance normally considered necessary in structural testing. Therefore, only half of the full scale bridge deck (single FRW of width 2.6m) was able to be accommodated and tested; with the continuity of the bridge deck in the lateral direction applied as boundary constraints along the full length of the FRW at six selected locations. This represents a novel approach not yet reported in the literature for bridge deck testing to the best of the knowledge of the author. The test was carried out under two loadings provided in AS 5100 (2004) – one stationary W80 wheel load and the second a moving axle load M1600. As the bridge investigated in the study is a single lane single span low volume road bridge, the risk of pre-existing damage and the expected high cycle fatigue failure potential was assessed as being minimal and hence the bridge deck was not tested structurally for fatigue/ fracture. The high axle load requirements have instead been focussed upon the investigation into the serviceability and ultimate limit state requirements. The testing regime adopted however involved extensive recording of strains and deflections at several critical locations of the FRW. Three locations of W80 point load and two locations of the M1600 Axle load were considered for the serviceability testing; the FRW was also tested under the ultimate load dictated by the M1600. The outcomes of the experimental investigation have demonstrated that the FRW is structurally adequate to resist the prescribed traffic loadings outlaid in AS 5100 (2004). As the loading was directly applied on to the FRW, the laboratory testing is assessed as being significantly conservative. The FRW bridge deck in the field would only resist the load transferred by the running platform, where, depending on the design, composite action might exist – thereby the share of the loading which needs to be resisted by the FRW would be smaller than the system tested in the lab. On this basis, a demonstration bridge is under construction at the time of writing this thesis and future research will involve field testing in order to assess its performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concrete is commonly used as a primary construction material for tall building construction. Load bearing components such as columns and walls in concrete buildings are subjected to instantaneous and long term axial shortening caused by the time dependent effects of "shrinkage", "creep" and "elastic" deformations. Reinforcing steel content, variable concrete modulus, volume to surface area ratio of the elements and environmental conditions govern axial shortening. The impact of differential axial shortening among columns and core shear walls escalate with increasing building height. Differential axial shortening of gravity loaded elements in geometrically complex and irregular buildings result in permanent distortion and deflection of the structural frame which have a significant impact on building envelopes, building services, secondary systems and the life time serviceability and performance of a building. Existing numerical methods commonly used in design to quantify axial shortening are mainly based on elastic analytical techniques and therefore unable to capture the complexity of non-linear time dependent effect. Ambient measurements of axial shortening using vibrating wire, external mechanical strain, and electronic strain gauges are methods that are available to verify pre-estimated values from the design stage. Installing these gauges permanently embedded in or on the surface of concrete components for continuous measurements during and after construction with adequate protection is uneconomical, inconvenient and unreliable. Therefore such methods are rarely if ever used in actual practice of building construction. This research project has developed a rigorous numerical procedure that encompasses linear and non-linear time dependent phenomena for prediction of axial shortening of reinforced concrete structural components at design stage. This procedure takes into consideration (i) construction sequence, (ii) time varying values of Young's Modulus of reinforced concrete and (iii) creep and shrinkage models that account for variability resulting from environmental effects. The capabilities of the procedure are illustrated through examples. In order to update previous predictions of axial shortening during the construction and service stages of the building, this research has also developed a vibration based procedure using ambient measurements. This procedure takes into consideration the changes in vibration characteristic of structure during and after construction. The application of this procedure is illustrated through numerical examples which also highlight the features. The vibration based procedure can also be used as a tool to assess structural health/performance of key structural components in the building during construction and service life.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing stock of aging office buildings will see a significant growth in retrofitting projects in Australian capital cities. Stakeholders of refitting works will also need to take on the sustainability challenge and realize tangible outcomes through project delivery. Traditionally, decision making for aged buildings, when facing the alternatives, is typically economically driven and on ad hoc basis. This leads to the tendency to either delay refitting for as long as possible thus causing building conditions to deteriorate, or simply demolish and rebuild with unjust financial burden. The technologies involved are often limited to typical strip-clean and repartition with dry walls and office cubicles. Changing business operational patterns, the efficiency of office space, and the demand on improved workplace environment, will need more innovative and intelligent approaches to refurbishing office buildings. For example, such projects may need to respond to political, social, environmental and financial implications. There is a need for the total consideration of buildings structural assessment, modeling of operating and maintenance costs, new architectural and engineering designs that maximise the utility of the existing structure and resulting productivity improvement, specific construction management procedures including procurement methods, work flow and scheduling and occupational health and safety. Recycling potential and conformance to codes may be other major issues. This paper introduces examples of Australian research projects which provided a more holistic approach to the decision making of refurbishing office space, using appropriate building technologies and products, assessment of residual service life, floor space optimisation and project procurement in order to bring about sustainable outcomes. The paper also discusses a specific case study on critical factors that influence key building components for these projects and issues for integrated decision support when dealing with the refurbishment, and indeed the “re-life”, of office buildings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The serviceability and safety of bridges are crucial to people’s daily lives and to the national economy. Every effort should be taken to make sure that bridges function safely and properly as any damage or fault during the service life can lead to transport paralysis, catastrophic loss of property or even casualties. Nonetheless, aggressive environmental conditions, ever-increasing and changing traffic loads and aging can all contribute to bridge deterioration. With often constrained budget, it is of significance to identify bridges and bridge elements that should be given higher priority for maintenance, rehabilitation or replacement, and to select optimal strategy. Bridge health prediction is an essential underpinning science to bridge maintenance optimization, since the effectiveness of optimal maintenance decision is largely dependent on the forecasting accuracy of bridge health performance. The current approaches for bridge health prediction can be categorised into two groups: condition ratings based and structural reliability based. A comprehensive literature review has revealed the following limitations of the current modelling approaches: (1) it is not evident in literature to date that any integrated approaches exist for modelling both serviceability and safety aspects so that both performance criteria can be evaluated coherently; (2) complex system modelling approaches have not been successfully applied to bridge deterioration modelling though a bridge is a complex system composed of many inter-related bridge elements; (3) multiple bridge deterioration factors, such as deterioration dependencies among different bridge elements, observed information, maintenance actions and environmental effects have not been considered jointly; (4) the existing approaches are lacking in Bayesian updating ability to incorporate a variety of event information; (5) the assumption of series and/or parallel relationship for bridge level reliability is always held in all structural reliability estimation of bridge systems. To address the deficiencies listed above, this research proposes three novel models based on the Dynamic Object Oriented Bayesian Networks (DOOBNs) approach. Model I aims to address bridge deterioration in serviceability using condition ratings as the health index. The bridge deterioration is represented in a hierarchical relationship, in accordance with the physical structure, so that the contribution of each bridge element to bridge deterioration can be tracked. A discrete-time Markov process is employed to model deterioration of bridge elements over time. In Model II, bridge deterioration in terms of safety is addressed. The structural reliability of bridge systems is estimated from bridge elements to the entire bridge. By means of conditional probability tables (CPTs), not only series-parallel relationship but also complex probabilistic relationship in bridge systems can be effectively modelled. The structural reliability of each bridge element is evaluated from its limit state functions, considering the probability distributions of resistance and applied load. Both Models I and II are designed in three steps: modelling consideration, DOOBN development and parameters estimation. Model III integrates Models I and II to address bridge health performance in both serviceability and safety aspects jointly. The modelling of bridge ratings is modified so that every basic modelling unit denotes one physical bridge element. According to the specific materials used, the integration of condition ratings and structural reliability is implemented through critical failure modes. Three case studies have been conducted to validate the proposed models, respectively. Carefully selected data and knowledge from bridge experts, the National Bridge Inventory (NBI) and existing literature were utilised for model validation. In addition, event information was generated using simulation to demonstrate the Bayesian updating ability of the proposed models. The prediction results of condition ratings and structural reliability were presented and interpreted for basic bridge elements and the whole bridge system. The results obtained from Model II were compared with the ones obtained from traditional structural reliability methods. Overall, the prediction results demonstrate the feasibility of the proposed modelling approach for bridge health prediction and underpin the assertion that the three models can be used separately or integrated and are more effective than the current bridge deterioration modelling approaches. The primary contribution of this work is to enhance the knowledge in the field of bridge health prediction, where more comprehensive health performance in both serviceability and safety aspects are addressed jointly. The proposed models, characterised by probabilistic representation of bridge deterioration in hierarchical ways, demonstrated the effectiveness and pledge of DOOBNs approach to bridge health management. Additionally, the proposed models have significant potential for bridge maintenance optimization. Working together with advanced monitoring and inspection techniques, and a comprehensive bridge inventory, the proposed models can be used by bridge practitioners to achieve increased serviceability and safety as well as maintenance cost effectiveness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When wheels pass over insulated rail joints (IRJs) a vertical impact force is generated. The ability to measure the impact force is valuable as the force signature helps understand the behaviour of the IRJs, in particular their potential for failure. The impact forces are thought to be one of the main factors that cause damage to the IRJ and track components. Study of the deterioration mechanism helps finding new methods to improve the service life of IRJs in track. In this research, the strain-gage-based wheel load detector, for the first time, is employed to measure the wheel–rail contact-impact force at an IRJ in a heavy haul rail line. In this technique, the strain gages are installed within the IRJ assembly without disturbing the structural integrity of IRJ and arranged in a full wheatstone bridge to form a wheel load detector. The instrumented IRJ is first tested and calibrated in the lab and then installed in the field. For comparison purposes, a reference rail section is also instrumented with the same strain gage pattern as the IRJ. In this paper the measurement technique, the process of instrumentation, and tests as well as some typical data obtained from the field and the inferences are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proper functioning of Insulated Rail Joints (IRJs) is essential for the safe operation of the railway signalling systems and broken rail identification circuitries. The Conventional IRJ (CIRJ) resembles structural butt joints consisting of two pieces of rails connected together through two joint bars on either side of their web and the assembly is held together through pre-tensioned bolts. As the IRJs should maintain electrical insulation between the two rails, a gap between the rail ends must be retained at all times and all metal contacting surfaces should be electrically isolated from each other using non-conductive material. At the gap, the rail ends lose longitudinal continuity and hence the vertical sections of the rail ends are often severely damaged, especially at the railhead, due to the passage of wheels compared to other continuously welded rail sections. Fundamentally, the reason for the severe damage can be related to the singularities of the wheel-rail contact pressure and the railhead stress. No new generation designs that have emerged in the market to date have focussed on this fundamental; they only have provided attention to either the higher strength materials or the thickness of the sections of various components of the IRJs. In this thesis a novel method of shape optimisation of the railhead is developed to eliminate the pressure and stress singularities through changes to the original sharp corner shaped railhead into an arc profile in the longitudinal direction. The optimal shape of the longitudinal railhead profile has been determined using three nongradient methods in search of accuracy and efficiency: (1) Grid Search Method; (2) Genetic Algorithm Method and (3) Hybrid Genetic Algorithm Method. All these methods have been coupled with a parametric finite element formulation for the evaluation of the objective function for each iteration or generation depending on the search algorithm employed. The optimal shape derived from these optimisation methods is termed as Stress Minimised Railhead (SMRH) in this thesis. This optimal SMRH design has exhibited significantly reduced stress concentration that remains well below the yield strength of the head hardened rail steels and has shifted the stress concentration location away from the critical zone of the railhead end. The reduction in the magnitude and the relocation of the stress concentration in the SMRH design has been validated through a full scale wheel – railhead interaction test rig; Railhead strains under the loaded wheels have been recorded using a non-contact digital image correlation method. Experimental study has confirmed the accuracy of the numerical predications. Although the SMRH shaped IRJs eliminate stress singularities, they can still fail due to joint bar or bolt hole cracking; therefore, another conceptual design, termed as Embedded IRJ (EIRJ) in this thesis, with no joint bars and pre-tensioned bolts has been developed using a multi-objective optimisation formulation based on the coupled genetic algorithm – parametric finite element method. To achieve the required structural stiffness for the safe passage of the loaded wheels, the rails were embedded into the concrete of the post tensioned sleepers; the optimal solutions for the design of the EIRJ is shown to simplify the design through the elimination of the complex interactions and failure modes of the various structural components of the CIRJ. The practical applicability of the optimal shapes SMRH and EIRJ is demonstrated through two illustrative examples, termed as improved designs (IMD1 & IMD2) in this thesis; IMD1 is a combination of the CIRJ and the SMRH designs, whilst IMD2 is a combination of the EIRJ and SMRH designs. These two improved designs have been simulated for two key operating (speed and wagon load) and design (wheel diameter) parameters that affect the wheel-rail contact; the effect of these parameters has been found to be negligible to the performance of the two improved designs and the improved designs are in turn found far superior to the current designs of the CIRJs in terms of stress singularities and deformation under the passage of the loaded wheels. Therefore, these improved designs are expected to provide longer service life in relation to the CIRJs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tilting-pad hydrodynamic thrust bearings are used in hydroelectric power stations around the world, reliably supporting turbines weighing hundreds of tonnes, over decades of service. Newer designs incorporate hydrostatic recesses machined into the sector-shaped pads to enhance oil film thickness at low rotational speeds. External pressurisation practically eliminates wear and enhances service life and reliability. It follows that older generating plants, lacking such assistance, stand to benefit from being retrofitted with hydrostatic lubrication systems. The design process is not trivial however. The need to increase the groove size to permit spontaneous lifting of the turbine under hydrostatic pressure, conflicts with the need to preserve performance of the original plane pad design. A haphazardly designed recess can induce a significant rise in bearing temperature concomitant with reduced mechanical efficiency and risk of thermal damage. In this work, a numerical study of a sector-shaped pad is undertaken to demonstrate how recess size and shape can affect the performance of a typical bearing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insulated Rail Joints (IRJs) are designed to electrically isolate two rails in rail tracks to control the signalling system for safer train operations. Unfortunately the gapped section of the IRJs is structurally weak and often fails prematurely especially in heavy haul tracks, which adversely affects service reliability and efficiency. The IRJs suffer from a number of failure modes; the railhead ratchetting at the gap is, however, regarded as the root cause and attended to in this thesis. Ratchetting increases with the increase in wheel loads; in the absence of a life prediction model, effective management of the IRJs for increased wagon wheel loads has become very challenging. Therefore, the main aim of this thesis is to determine method to predict IRJs' service life. The distinct discontinuity of the railhead at the gap makes the Hertzian theory and the rolling contact shakedown map, commonly used in the continuously welded rails, not applicable to examine the metal ratchetting of the IRJs. Finite Element (FE) technique is, therefore, used to explore the railhead metal ratchetting characteristics in this thesis, the boundary conditions of which has been determined from a full scale study of the IRJ specimens under rolling contact of the loaded wheels. A special purpose test set up containing full-scale wagon wheel was used to apply rolling wheel loads on the railhead edges of the test specimens. The state of the rail end face strains was determined using a non-contact digital imaging technique and used for calibrating the FE model. The basic material parameters for this FE model were obtained through independent uniaxial, monotonic tensile tests on specimens cut from the head hardened virgin rails. The monotonic tensile test data have been used to establish a cyclic load simulation model of the railhead steel specimen; the simulated cyclic load test has provided the necessary data for the three decomposed kinematic hardening plastic strain accumulation model of Chaboche. A performance based service life prediction algorithm for the IRJs was established using the plastic strain accumulation obtained from the Chaboche model. The predicted service lives of IRJs using this algorithm have agreed well with the published data. The finite element model has been used to carry out a sensitivity study on the effects of wheel diameter to the railhead metal plasticity. This study revealed that the depth of the plastic zone at the railhead edges is independent of the wheel diameter; however, large wheel diameter is shown to increase the IRJs' service life.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Galvanic corrosion is a common phenomenon in Carbon Fibre Reinforced Polymer (CFRP) strengthened steel structures in wet environments and submerged conditions, which reduces durability by weakening the bond between the CFRP and steel substrate. CFRP materials have already been proven to have superior resistance to corrosion and chemical attacks but the adhesive and steel are generally affected by long-term exposure to moisture, especially in conjunction with salts resulting from deicing of ocean spray. This paper presents the results of a research program to improve the durability of CFRP strengthened steel circular hollow section (CHS) members by treating the steel surface with an epoxy based adhesion promoter and inserting Glass Fibre Reinforced Polymer (GFRP) as a galvanic corrosion barrier against simulated sea water. It also presents the effects of accelerated corrosion on the bond of CFRP strengthened hollow steel members. The program consisted of four CFRP strengthened steel beams and one unstrengthened steel beam. Two strengthened beams were used as control while the other two beams were exposed to a highly corrosive environment to induce accelerated corrosion. The corrosion rate was considered 10% which represents a moderate level of loss in the cross-sectional area of the steel tube throughout its intended service life. The beams were then loaded to failure under four-point bending. The research findings indicate that the accelerated corrosion adversely affected the ultimate strength of the conditioned beams and the embedded glass fibre enhanced the bond durability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comprehensive literature review has been undertaken exploring the stressors placed on the personal relationships of Australian Army personnel, through service life and also overseas deployments. This work is the first step in a program of research aimed at developing a screening tool, aimed at acting as an early warning system to enable the right assistance to be given to affected personnel at the earliest possible time. It is envisioned that this tool will be utilised by the day-to-day managers of Australian Army personnel, of whom the vast majority are not health practitioners. This review has identified the commonalities of relationships that last through service life and/or deployments, and those that fail. These factors are those which will aid the development of the screening tool, and enable the early identification of Australian Army personnel who are at risk of having their personal relationship break down. Several of the known relationship stressors are relevant to other ‘high intensity’ professions, such as paramedics. Personal experience as an Army Officer has helped to highlight the importance of this research, and the benefits of developing a tool tailored to the unique social microclimate that is the Australian Army are clear. This research is, to the author’s knowledge, unique in the Australian context.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insulated Rail Joints (IRJs) are safety critical component of the automatic block signalling and broken rail detection systems. IRJs exhibit several failure modes due to complex interaction between the railhead ends and the wheel tread near the gap. These localised zones could not be monitored using automatic sensing devices and hence are resorted to visual inspection only, which is error prone and expensive. In Australia alone currently there are 50,000 IRJs across 80,000 km of rail track. The significance of the problem around the world could thus be realised as there exists one IRJ for each 1.6 km track length. IRJs exhibit extremely low and variable service life; further the track substructure underneath IRJs degrade faster. Thus presence of the IRJs incur significant costs to track maintenance. IRJ failures have also contributed to some train derailments and various traffic disruptions in rail lines. This paper reports a systematic research carried out over seven years on the mechanical behaviour of IRJs for practically relevant outcomes. The research has scientifically established that stiffening the track bed for reduction in impact force is an ill-conceived concept and the most effective method is to reduce the gap size. Further it is established that hardening the railhead ends through laser coating (or other) cannot adequately address the metal flow problem in the long run; modification of the railhead profile is the only appropriate technique to completely eliminate the problem. Part of these outcomes has been adopted by the rail infrastructure owners in Australia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To effectively address the high rate of failure of Insulated Rail Joints (IRJs) in the heavy haul lines, a research plan was designed and implemented with particular attention to understand their mechanical behaviour and deterioration process. In this paper, part of this ongoing research is described. During the past decades many studies have tried to improve the service life of IRJs by introducing a new structural design or material for IRJ components. This paper looks into this problem from a different perspective highlighting the significance of localised condition of track to the loads and responses of the IRJs. Results from a series of field measurements conducted in a rail track within the Australian Rail Track Corporation (ARTC) network are discussed. The interactive effects of IRJ responses and localised track condition are further investigated using the results obtained from numerical simulations. The field measurements and the simulation results provide valuable insight on the influence of track condition to the behaviour of IRJs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rail joints are provided with a gap to account for thermal movement and to maintain electrical insulation for the control of signals and/or broken rail detection circuits. The gap in the rail joint is regarded as a source of significant problems for the rail industry since it leads to a very short rail service life compared with other track components due to the various, and difficult to predict, failure modes – thus increasing the risk for train operations. Many attempts to improve the life of rail joints have led to a large number of patents around the world; notable attempts include strengthening through larger-sized joint bars, an increased number of bolts and the use of high yield materials. Unfortunately, no design to date has shown the ability to prolong the life of the rail joints to values close to those for continuously welded rail (CWR). This paper reports the results of a fundamental study that has revealed that the wheel contact at the free edge of the railhead is a major problem since it generates a singularity in the contact pressure and railhead stresses. A design was therefore developed using an optimisation framework that prevents wheel contact at the railhead edge. Finite element modelling of the design has shown that the contact pressure and railhead stress singularities are eliminated, thus increasing the potential to work as effectively as a CWR that does not have a geometric gap. An experimental validation of the finite element results is presented through an innovative non-contact measurement of strains. Some practical issues related to grinding rails to the optimal design are also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This publication lists the more important wood properties of commercial timbers used for construction in Queensland. It also provides requirements and conditions of use for these timbers to provide appropriate design service life in various construction applications. The correct specification of timber considers a range of timber properties including, but not limited to, stress grade; durability class; moisture content and insect resistance. For the specification of timber sizes and spans, relevant Australian Standards and design manuals should be consulted—e.g. Australian Standard AS 1684 series Residential timber—framed construction parts 2 and 3 (Standards Australia 2006a;b.) Book 1 explains the terms used; with reference to nomenclature; origin and timber properties presented under specific column headings in the schedules (Book 2). It also explains target design life; applications and decay hazard zones; presented in the Book 2 Schedules. Book 2 consists of reference tables; presented as schedules A; B and C: • Schedule A contains commercial mixtures of unidentified timbers and of some Australian and imported softwoods. Index numbers 1–10 • Schedule B contains Australian-grown timber species; including both natural forests and plantations. Index numbers 11–493 • Schedule C contains timbers imported into Australia from overseas. Index numbers 494–606 Each schedule has two parts presenting data in tables. • Part 1: Nomenclature, origin and properties of imported timber species • Part 2: Approved uses for commercial mixtures of imported timber species The recommendations made in this publication assume that good building practice will be carried out.