891 resultados para sequence database
Resumo:
Signature databases are vital tools for identifying distant relationships in novel sequences and hence for inferring protein function. InterPro is an integrated documentation resource for protein families, domains and functional sites, which amalgamates the efforts of the PROSITE, PRINTS, Pfam and ProDom database projects. Each InterPro entry includes a functional description, annotation, literature references and links back to the relevant member database(s). Release 2.0 of InterPro (October 2000) contains over 3000 entries, representing families, domains, repeats and sites of post-translational modification encoded by a total of 6804 different regular expressions, profiles, fingerprints and Hidden Markov Models. Each InterPro entry lists all the matches against SWISS-PROT and TrEMBL (more than 1,000,000 hits from 462,500 proteins in SWISS-PROT and TrEMBL). The database is accessible for text- and sequence-based searches at http://www.ebi.ac.uk/interpro/. Questions can be emailed to interhelp@ebi.ac.uk.
Resumo:
InterPro, an integrated documentation resource of protein families, domains and functional sites, was created in 1999 as a means of amalgamating the major protein signature databases into one comprehensive resource. PROSITE, Pfam, PRINTS, ProDom, SMART and TIGRFAMs have been manually integrated and curated and are available in InterPro for text- and sequence-based searching. The results are provided in a single format that rationalises the results that would be obtained by searching the member databases individually. The latest release of InterPro contains 5629 entries describing 4280 families, 1239 domains, 95 repeats and 15 post-translational modifications. Currently, the combined signatures in InterPro cover more than 74% of all proteins in SWISS-PROT and TrEMBL, an increase of nearly 15% since the inception of InterPro. New features of the database include improved searching capabilities and enhanced graphical user interfaces for visualisation of the data. The database is available via a webserver (http://www.ebi.ac.uk/interpro) and anonymous FTP (ftp://ftp.ebi.ac.uk/pub/databases/interpro).
Resumo:
The Eukaryotic Promoter Database (EPD) is an annotated non-redundant collection of eukaryotic POL II promoters, experimentally defined by a transcription start site (TSS). There may be multiple promoter entries for a single gene. The underlying experimental evidence comes from journal articles and, starting from release 73, from 5' ESTs of full-length cDNA clones used for so-called in silico primer extension. Access to promoter sequences is provided by pointers to TSS positions in nucleotide sequence entries. The annotation part of an EPD entry includes a description of the type and source of the initiation site mapping data, links to other biological databases and bibliographic references. EPD is structured in a way that facilitates dynamic extraction of biologically meaningful promoter subsets for comparative sequence analysis. Web-based interfaces have been developed that enable the user to view EPD entries in different formats, to select and extract promoter sequences according to a variety of criteria and to navigate to related databases exploiting different cross-references. Tools for analysing sequence motifs around TSSs defined in EPD are provided by the signal search analysis server. EPD can be accessed at http://www.epd. isb-sib.ch.
Resumo:
The number of sequences generated by genome projects has increased exponentially, but gene characterization has not followed at the same rate. Sequencing and analysis of full-length cDNAs is an important step in gene characterization that has been used nowadays by several research groups. In this work, we have selected Schistosoma mansoni clones for full-length sequencing, using an algorithm that investigates the presence of the initial methionine in the parasite sequence based on the positions of alignment start between two sequences. BLAST searches to produce such alignments have been performed using parasite expressed sequence tags produced by Minas Gerais Genome Network against sequences from the database Eukaryotic Cluster of Orthologous Groups (KOG). This procedure has allowed the selection of clones representing 398 proteins which have not been deposited as S. mansoni complete CDS in any public database. Dedicated sequencing of 96 of such clones with reads from both 5' and 3' ends has been performed. These reads have been assembled using PHRAP, resulting in the production of 33 full-length sequences that represent novel S. mansoni proteins. These results shall contribute to construct a more complete view of the biology of this important parasite.
Resumo:
The characterization of expressed sequence tags (ESTs) generated from a cDNA library of Leishmania (Leishmania) amazonensis amastigotes is described. The sequencing of 93 clones generated new L. (L.) amazonensis ESTs from which 32% are not related to any other sequences in database and 68% presented significant similarities to known genes. The chromosome localization of some L. (L.) amazonensis ESTs was also determined in L. (L.) amazonensis and L. (L.) major. The characterization of these ESTs is suitable for the genome physical mapping, as well as for the identification of genes encoding cysteine proteinases implicated with protective immune responses in leishmaniasis.
Resumo:
CA88 is the first long nuclear repetitive DNA sequence identified in the blood fluke, Schistosoma mansoni. The assembled S. mansoni sequence, which contains the CA88 repeat, has 8,887 nucleotides and at least three repeat units of approximately 360 bp. In addition, CA88 also possesses an internal CA microsatellite, identified as SmBr18. Both PCR and BLAST analysis have been used to analyse and confirm the CA88 sequence in other S. mansoni sequences in the public database. PCR-acquired nuclear repetitive DNA sequence profiles from nine Schistosoma species were used to classify this organism into four genotypes. Included among the nine species analysed were five sequences of both African and Asian lineages that are known to infect humans. Within these genotypes, three of them refer to recognised species groups. A panel of four microsatellite loci, including SmBr18 and three previously published loci, has been used to characterise the nine Schistosoma species. Each species has been identified and classified based on its CA88 DNA fingerprint profile. Furthermore, microsatellite sequences and intra-specific variation have also been observed within the nine Schistosoma species sequences. Taken together, these results support the use of these markers in studying the population dynamics of Schistosoma isolates from endemic areas and also provide new methods for investigating the relationships between different populations of parasites. In addition, these data also indicate that Schistosoma magrebowiei is not a sister taxon to Schistosoma mattheei, prompting a new designation to a basal clade.
Resumo:
Conventional methods of gene prediction rely on the recognition of DNA-sequence signals, the coding potential or the comparison of a genomic sequence with a cDNA, EST, or protein database. Reasons for limited accuracy in many circumstances are species-specific training and the incompleteness of reference databases. Lately, comparative genome analysis has attracted increasing attention. Several analysis tools that are based on human/mouse comparisons are already available. Here, we present a program for the prediction of protein-coding genes, termed SGP-1 (Syntenic Gene Prediction), which is based on the similarity of homologous genomic sequences. In contrast to most existing tools, the accuracy of SGP-1 depends little on species-specific properties such as codon usage or the nucleotide distribution. SGP-1 may therefore be applied to nonstandard model organisms in vertebrates as well as in plants, without the need for extensive parameter training. In addition to predicting genes in large-scale genomic sequences, the program may be useful to validate gene structure annotations from databases. To this end, SGP-1 output also contains comparisons between predicted and annotated gene structures in HTML format. The program can be accessed via a Web server at http://soft.ice.mpg.de/sgp-1. The source code, written in ANSI C, is available on request from the authors.
Resumo:
Selenoproteins are a diverse group of proteinsusually misidentified and misannotated in sequencedatabases. The presence of an in-frame UGA (stop)codon in the coding sequence of selenoproteingenes precludes their identification and correctannotation. The in-frame UGA codons are recodedto cotranslationally incorporate selenocysteine,a rare selenium-containing amino acid. The developmentof ad hoc experimental and, more recently,computational approaches have allowed the efficientidentification and characterization of theselenoproteomes of a growing number of species.Today, dozens of selenoprotein families have beendescribed and more are being discovered in recentlysequenced species, but the correct genomic annotationis not available for the majority of thesegenes. SelenoDB is a long-term project that aims toprovide, through the collaborative effort of experimentaland computational researchers, automaticand manually curated annotations of selenoproteingenes, proteins and SECIS elements. Version 1.0 ofthe database includes an initial set of eukaryoticgenomic annotations, with special emphasis on thehuman selenoproteome, for immediate inspectionby selenium researchers or incorporation into moregeneral databases. SelenoDB is freely available athttp://www.selenodb.org.
Resumo:
Background: Single Nucleotide Polymorphisms, among other type of sequence variants, constitute key elements in genetic epidemiology and pharmacogenomics. While sequence data about genetic variation is found at databases such as dbSNP, clues about the functional and phenotypic consequences of the variations are generally found in biomedical literature. The identification of the relevant documents and the extraction of the information from them are hampered by the large size of literature databases and the lack of widely accepted standard notation for biomedical entities. Thus, automatic systems for the identification of citations of allelic variants of genes in biomedical texts are required. Results: Our group has previously reported the development of OSIRIS, a system aimed at the retrieval of literature about allelic variants of genes http://ibi.imim.es/osirisform.html. Here we describe the development of a new version of OSIRIS (OSIRISv1.2, http://ibi.imim.es/OSIRISv1.2.html webcite) which incorporates a new entity recognition module and is built on top of a local mirror of the MEDLINE collection and HgenetInfoDB: a database that collects data on human gene sequence variations. The new entity recognition module is based on a pattern-based search algorithm for the identification of variation terms in the texts and their mapping to dbSNP identifiers. The performance of OSIRISv1.2 was evaluated on a manually annotated corpus, resulting in 99% precision, 82% recall, and an F-score of 0.89. As an example, the application of the system for collecting literature citations for the allelic variants of genes related to the diseases intracranial aneurysm and breast cancer is presented. Conclusion: OSIRISv1.2 can be used to link literature references to dbSNP database entries with high accuracy, and therefore is suitable for collecting current knowledge on gene sequence variations and supporting the functional annotation of variation databases. The application of OSIRISv1.2 in combination with controlled vocabularies like MeSH provides a way to identify associations of biomedical interest, such as those that relate SNPs with diseases.
Resumo:
The InterPro database (http://www.ebi.ac.uk/interpro/) is a freely available resource that can be used to classify sequences into protein families and to predict the presence of important domains and sites. Central to the InterPro database are predictive models, known as signatures, from a range of different protein family databases that have different biological focuses and use different methodological approaches to classify protein families and domains. InterPro integrates these signatures, capitalizing on the respective strengths of the individual databases, to produce a powerful protein classification resource. Here, we report on the status of InterPro as it enters its 15th year of operation, and give an overview of new developments with the database and its associated Web interfaces and software. In particular, the new domain architecture search tool is described and the process of mapping of Gene Ontology terms to InterPro is outlined. We also discuss the challenges faced by the resource given the explosive growth in sequence data in recent years. InterPro (version 48.0) contains 36 766 member database signatures integrated into 26 238 InterPro entries, an increase of over 3993 entries (5081 signatures), since 2012.
Resumo:
The sequence profile method (Gribskov M, McLachlan AD, Eisenberg D, 1987, Proc Natl Acad Sci USA 84:4355-4358) is a powerful tool to detect distant relationships between amino acid sequences. A profile is a table of position-specific scores and gap penalties, providing a generalized description of a protein motif, which can be used for sequence alignments and database searches instead of an individual sequence. A sequence profile is derived from a multiple sequence alignment. We have found 2 ways to improve the sensitivity of sequence profiles: (1) Sequence weights: Usage of individual weights for each sequence avoids bias toward closely related sequences. These weights are automatically assigned based on the distance of the sequences using a published procedure (Sibbald PR, Argos P, 1990, J Mol Biol 216:813-818). (2) Amino acid substitution table: In addition to the alignment, the construction of a profile also needs an amino acid substitution table. We have found that in some cases a new table, the BLOSUM45 table (Henikoff S, Henikoff JG, 1992, Proc Natl Acad Sci USA 89:10915-10919), is more sensitive than the original Dayhoff table or the modified Dayhoff table used in the current implementation. Profiles derived by the improved method are more sensitive and selective in a number of cases where previous methods have failed to completely separate true members from false positives.
Resumo:
HTPSELEX is a public database providing access to primary and derived data from high-throughput SELEX experiments aimed at characterizing the binding specificity of transcription factors. The resource is primarily intended to serve computational biologists interested in building models of transcription factor binding sites from large sets of binding sequences. The guiding principle is to make available all information that is relevant for this purpose. For each experiment, we try to provide accurate information about the protein material used, details of the wet lab protocol, an archive of sequencing trace files, assembled clone sequences (concatemers) and complete sets of in vitro selected protein-binding tags. In addition, we offer in-house derived binding sites models. HTPSELEX also offers reasonably large SELEX libraries obtained with conventional low-throughput protocols. The FTP site contains the trace archives and database flatfiles. The web server offers user-friendly interfaces for viewing individual entries and quality-controlled download of SELEX sequence libraries according to a user-defined sequencing quality threshold. HTPSELEX is available from ftp://ftp.isrec.isb-sib.ch/pub/databases/htpselex/ and http://www.isrec.isb-sib.ch/htpselex.
Resumo:
Although research on influenza lasted for more than 100 years, it is still one of the most prominent diseases causing half a million human deaths every year. With the recent observation of new highly pathogenic H5N1 and H7N7 strains, and the appearance of the influenza pandemic caused by the H1N1 swine-like lineage, a collaborative effort to share observations on the evolution of this virus in both animals and humans has been established. The OpenFlu database (OpenFluDB) is a part of this collaborative effort. It contains genomic and protein sequences, as well as epidemiological data from more than 27,000 isolates. The isolate annotations include virus type, host, geographical location and experimentally tested antiviral resistance. Putative enhanced pathogenicity as well as human adaptation propensity are computed from protein sequences. Each virus isolate can be associated with the laboratories that collected, sequenced and submitted it. Several analysis tools including multiple sequence alignment, phylogenetic analysis and sequence similarity maps enable rapid and efficient mining. The contents of OpenFluDB are supplied by direct user submission, as well as by a daily automatic procedure importing data from public repositories. Additionally, a simple mechanism facilitates the export of OpenFluDB records to GenBank. This resource has been successfully used to rapidly and widely distribute the sequences collected during the recent human swine flu outbreak and also as an exchange platform during the vaccine selection procedure. Database URL: http://openflu.vital-it.ch.
Resumo:
The GO annotation dataset provided by the UniProt Consortium (GOA: http://www.ebi.ac.uk/GOA) is a comprehensive set of evidenced-based associations between terms from the Gene Ontology resource and UniProtKB proteins. Currently supplying over 100 million annotations to 11 million proteins in more than 360,000 taxa, this resource has increased 2-fold over the last 2 years and has benefited from a wealth of checks to improve annotation correctness and consistency as well as now supplying a greater information content enabled by GO Consortium annotation format developments. Detailed, manual GO annotations obtained from the curation of peer-reviewed papers are directly contributed by all UniProt curators and supplemented with manual and electronic annotations from 36 model organism and domain-focused scientific resources. The inclusion of high-quality, automatic annotation predictions ensures the UniProt GO annotation dataset supplies functional information to a wide range of proteins, including those from poorly characterized, non-model organism species. UniProt GO annotations are freely available in a range of formats accessible by both file downloads and web-based views. In addition, the introduction of a new, normalized file format in 2010 has made for easier handling of the complete UniProt-GOA data set.
Resumo:
BACKGROUND: Fourmidable is an infrastructure to curate and share the emerging genetic, molecular, and functional genomic data and protocols for ants. DESCRIPTION: The Fourmidable assembly pipeline groups nucleotide sequences into clusters before independently assembling each cluster. Subsequently, assembled sequences are annotated via Interproscan and BLAST against general and insect-specific databases. Gene-specific information can be retrieved using gene identifiers, searching for similar sequences or browsing through inferred Gene Ontology annotations. The database will readily scale as ultra-high throughput sequence data and sequences from additional species become available. CONCLUSION: Fourmidable currently houses EST data from two ant species and microarray gene expression data for one of these. Fourmidable is publicly available at http://fourmidable.unil.ch.