914 resultados para semi-physical simulation
Resumo:
The present paper records the results of a case study on the impact of an extensive grassland fire on the physical and optical properties of aerosols at a semi-arid station in southern India for the first time from ground based measurements using a MICROTOPS-II sunphotometer, an aethalometer and a quartz crystal microbalance impactor (QCM). Observations revealed a substantial increase in aerosol optical depth (AOD) at all wavelengths during burning days compared to normal days. High AOD values observed at shorter wavelengths suggest the dominance of accumulation mode particle loading over the study area. Daily mean aerosol size spectra shows, most of the time, power-law distribution. To characterize AOD, the Angstrom parameters (i.e., alpha and beta) were used. Wavelength exponent (1.38) and turbidity coefficient (0.21) are high during burning days compared to normal days, thereby suggesting an increase in accumulation mode particle loading. Aerosol size distribution suggested dominance of accumulation mode particle loading during burning days compared to normal days. A significant positive correlation was observed between AOD at 500 mn and water vapour and negative correlation between AOD at 500 nm and wind speed for burning and non-burning days. Diurnal variations of black carbon (BC) aerosol mass concentrations increased by a factor of similar to 2 in the morning and afternoon hours during burning period compared to normal days.
Resumo:
A phase field modelling approach is implemented in the present study towards simulation of microstructure evolution during cooling slope semi solid slurry generation process of A380 Aluminium alloy. First, experiments are performed to evaluate the number of seeds required within the simulation domain to simulate near spherical microstructure formation, occurs during cooling slope processing of the melt. Subsequently, microstructure evolution is studied employing a phase field method. Simulations are performed to understand the effect of cooling rate on the slurry microstructure. Encouraging results are obtained from the simulation studies which are validated by experimental observations. The results obtained from mesoscopic phase field simulations are grain size, grain density, degree of sphericity of the evolving primary Al phase and the amount of solid fraction present within the slurry at different time frames. Effect of grain refinement also has been studied with an aim of improving the slurry microstructure further. Insight into the process has been obtained from the numerical findings, which are found to be useful for process control.
Resumo:
This paper studies the stability of jointed rock slopes by using our improved three-dimensional discrete element methods (DEM) and physical modeling. Results show that the DEM can simulate all failure modes of rock slopes with different joint configurations. The stress in each rock block is not homogeneous and blocks rotate in failure development. Failure modes depend on the configuration of joints. Toppling failure is observed for the slope with straight joints and sliding failure is observed for the slope with staged joints. The DEM results are also compared with those of limit equilibrium method (LEM). Without considering the joints in rock masses, the LEM predicts much higher factor of safety than physical modeling and DEM. The failure mode and factor of safety predicted by the DEM are in good agreement with laboratory tests for any jointed rock slope.
Resumo:
In the current paper, we have primarily addressed one powerful simulation tool developed during the last decades-Large Eddy Simulation (LES), which is most suitable for unsteady three-dimensional complex turbulent flows in industry and natural environment. The main point in LES is that the large-scale motion is resolved while the small-scale motion is modeled or, in geophysical terminology, parameterized. With a view to devising a subgrid-scale(SGS) model of high quality, we have highlighted analyzing physical aspects in scale interaction and-energy transfer such as dissipation, backscatter, local and non-local interaction, anisotropy and resolution requirement. They are the factors responsible for where the advantages and disadvantages in existing SGS models come from. A case study on LES of turbulence in vegetative canopy is presented to illustrate that LES model is more based on physical arguments. Then, varieties of challenging complex turbulent flows in both industry and geophysical fields in the near future-are presented. In conclusion; we may say with confidence that new century shall see the flourish in the research of turbulence with the aid of LES combined with other approaches.
A Semi-Empirical Equation of Penetration Depth on Concrete Target Impacted by Ogive-Nose Projectiles
Resumo:
In this paper, the penetration process of ogive-nose projectiles into the semi-infinite concrete target is investigated by the dimensional analysis method and FEM simulation. With the dimensional analysis, main non-dimensional parameters which control the penetration depth are obtained with some reasonable hypothesis. Then, a new semi-empirical equation is present based on the original work of Forrestal et al., has only two non-dimensional combined variables with definite physical meanings. To verify this equation, prediction results are compared with experiments in a wide variation region of velocity. Then, a commercial FEM code, LS-DYNA, is used to simulate the complex penetration process, that also show the novel semi-empirical equation is reasonable for determining the penetration depth in a concrete target.
A Semi-Empirical Equation of Penetration Depth on Concrete Target Impacted by Ogive-Nose Projectiles
Resumo:
In this paper, the penetration process of ogive-nose projectiles into the semi-infinite concrete target is investigated by the dimensional analysis method and FEM simulation. With the dimensional analysis, main non-dimensional parameters which control the penetration depth are obtained with some reasonable hypothesis. Then, a new semi-empirical equation is present based on the original work of Forrestal et al., has only two non-dimensional combined variables with definite physical meanings. To verify this equation, prediction results are compared with experiments in a wide variation region of velocity. Then, a commercial FEM code, LS-DYNA, is used to simulate the complex penetration process, that also show the novel semi-empirical equation is reasonable for determining the penetration depth in a concrete target.
Resumo:
Zinc oxide is a versatile II-VI naturally n-type semiconductor that exhibits piezoelectric properties. By controlling the growth kinetics during a simple carbothermal reduction process a wide range of 1D nanostructures such as nanowires, nanobelts, and nanotetrapods have been synthesized. The driving force: for the nanostructure growth is the Zn vapour supersaturation and supply rate which, if known, can be used to predict and explain the type of crystal structure that results. A model which attempts to determine the Zn vapour concentration as a function of position in the growth furnace is described. A numerical simulation package, COMSOL, was used to simultaneously model the effects of fluid flow, diffusion and heat transfer in a tube furnace made specifically for ZnO nanostructure growth. Parameters such as the temperature, pressure, and flow rate are used as inputs to the model to show the effect that each one has on the Zn concentration profile. An experimental parametric study of ZnO nanostructure growth was also conducted and compared to the model predictions for the Zn concentration in the tube. © 2008 Materials Research Society.
Resumo:
An important first step in spray combustion simulation is an accurate determination of the fuel properties which affects the modelling of spray formation and reaction. In a practical combustion simulation, the implementation of a multicomponent model is important in capturing the relative volatility of different fuel components. A Discrete Multicomponent (DM) model is deemed to be an appropriate candidate to model a composite fuel like biodiesel which consists of four components of fatty acid methyl esters (FAME). In this paper, the DM model is compared with the traditional Continuous Thermodynamics (CTM) model for both diesel and biodiesel. The CTM model is formulated based on mixing rules that incorporate the physical and thermophysical properties of pure components into a single continuous surrogate for the composite fuel. The models are implemented within the open-source CFD code OpenFOAM, and a semi-quantitative comparison is made between the predicted spray-combustion characteristics and optical measurements of a swirl-stabilised flame of diesel and biodiesel. The DM model performs better than the CTM model in predicting a higher magnitude of heat release rate in the top flame brush region of the biodiesel flame compared to that of the diesel flame. Using both the DM and CTM models, the simulation successfully reproduces the droplet size, volume flux, and droplet density profiles of diesel and biodiesel. The DM model predicts a longer spray penetration length for biodiesel compared to that of diesel, as seen in the experimental data. Also, the DM model reproduces a segregated biodiesel fuel vapour field and spray in which the most abundant FAME component has the longest vapour penetration. In the biodiesel flame, the relative abundance of each fuel component is found to dominate over the relative volatility in terms of the vapour species distribution and vice versa in the liquid species distribution. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
We have studied the optical matching layers (OMLs) and external quantum efficiency in the evanescent coupling photodiodes (ECPDs) integrating a diluted waveguide as a fibre-to-waveguide coupler, by using the semi-vectorial beam propagation method (BPM). The physical basis of OML has been identified, thereby a general designing rule of OML is developed in such a kind of photodiode. In addition, the external quantum efficiency and the polarization sensitivity versus the absorption and coupling length are analysed. With an optical matching layer, the absorption medium with a length of 30 mu m could absorb 90% of the incident light at 1.55 mu m wavelength, thus the total absorption increases more than 7 times over that of the photodiode without any optical matching layer.
Resumo:
Mode characteristics for two-dimensional equilateral-polygonal microresonators are investigated based on symmetry analysis and finite-difference time-domain numerical simulation. The symmetries of the resonators can be described by the point group C-Nv, accordingly, the confined modes in these resonators can be classified into irreducible representations of the point group C-Nv. Compared with circular resonators, the modes in equilateral-polygonal resonators have different characteristics due to the break of symmetries, such as the split of double-degenerate modes, high field intensity in the center region, and anomalous traveling-wave modes, which should be considered in the designs of the polygonal resonator microlasers or optical add-drop filters.
Resumo:
A theoretical study is presented of the lateral confinement potential (CP) in the very narrow mesa channels fabricated in the conventional two-dimensional (2D) electron gas in GaAs-AlxGa1-xAs heterostructures. The ID electronic structures are calculated in the framework of the confinement potential: V(x) = m* omega0(2)x2/2 for Absolute value of x
Resumo:
以酶凝干酪素的凝胶化过程为对象,利用有限元方法数值分析了在凝胶化过程中温度场的空间分布和时间演变规律.在此基础上,基于一阶的凝胶化动力学方程,数值模拟了凝胶体系的复剪切模量场,进而分析了材料配方、体系尺寸与冷却方案对复剪切模量场的影响规律.模拟结果表明,由于热阻的差异,体系表面的冷却速率大于内部,表面首先发生凝胶化;而由于预凝胶化阶段的平均冷却速率决定了无穷复剪切模量的值,最终体系内部的复剪切模量超过表面的.
Resumo:
Direct simulations of wind musical instruments using the compressible Navier Stokes equations have recently become possible through the use of parallel computing and through developments in numerical methods. As a first demonstration, the flow of air and the generation of musical tones inside a soprano recorder are simulated numerically. In addition, physical measurements are made of the acoustic signal generated by the recorder at different blowing speeds. The comparison between simulated and physically measured behavior is encouraging and points towards ways of improving the simulations.