928 resultados para seed removal
Resumo:
Leucopogon melaleucoides, a flowering shrub, is desired by floricultural markets but is difficult to propagate. Seed viability was tested and dormancy mechanisms were studied to develop a commercial propagation system. Although around 56% of seed were viable, germination was completely inhibited unless the endocarp was removed. After-ripened seed (8 months after collection) germinated faster than fresh seed (2 days after collection), but germination occurred over a prolonged period (155 days). Germination of after-ripened seed was promoted with GA(3) or a commercial smoke product containing unknown plant growth regulators. All viable seed treated with GA(3) at 1000 mg L-1 had germinated after 24 days. The results suggest that both a physical and physiological dormancy mechanism occur for this species, with removal of the endocarp and pretreatment with 1000 mg L-1 GA(3) promoting complete germination of viable seed.
Resumo:
The morphology of the fruit and difficulties with fruit processing impose major limitations to germination of Persoonia sericea and P. virgata. The mesocarp must be removed without harming the embryo. Fermentation of fruit or manual removal of the mesocarp was effective but digestion in 32% hydrochloric acid (HCl) completely inhibited germination. The endocarp is extremely hard and therefore very difficult and time consuming to remove without damaging the seeds. The most efficient method was cracking the endocarp with pliers, followed by manual removal of seeds. Germination was completely inhibited unless at least half of the endocarp was removed. Microbial contamination of the fruit and seeds was controlled by disinfestation and germination of the seed under aseptic conditions. The results suggest that dormancy in these species is primarily due to physical restriction of the embryo by the hard endocarp.
Resumo:
Chionanthus pygmaeus Small (pygmy fringetree) (Oleaceae) is an endemic and rare Florida species, which has an attractive, small habit giving it great potential for use in managed landscapes. Members of the genus Chionanthus are difficult to propagate via cuttings and possess complex seed dormancies that are not well understood. Conservation of pygmy fringetree and its potential for commercial propagation for use in managed landscapes is contingent on a better understanding of its complex seed dormancy and enhancement of its propagation. I conducted two experiments to assess sexual and asexual propagation methods for pygmy fringetree. The first experiment was conducted to determine what factors are involved in overcoming seed dormancy. Various scarification treatments, which mimicked conditions seeds are exposed to in the wild, were investigated to determine their effects on germination of 20-year-old seeds originally collected from the species’ native range. Treatments included endocarp removal, sulfuric acid, boiling-water, and smoke-water treatments. Prior to treatment initiation, seed viability was estimated to be 12%. Treated seeds went through two cold- and two warm-stratification periods of 4°C and 25°C, respectively, in a dark growth chamber. After 180 days, none of the treatments induced early germination. Seeds were then tested for viability, which was 11%. Seed dormancy of the species is apparently complex, allowing some of the seeds to retain some degree of viability, but without dormancy requirements satisfied. The second experiment was conducted to assess if pygmy fringetree could be successfully propagated via hardwood or root cuttings if the appropriate combination of environmental conditions and hormones were applied. Hardwood and root cuttings were treated with either 1000 ppm IBA talc, 8000 ppm IBA talc, or inert talc. All cuttings were placed on a mist bench in a greenhouse for 9 weeks. Hardwood cuttings were supplemented with bottom heat at 24 °C. No treatments were successful in inducing adventitious root formation. I conclude that pygmy fringetree seeds possess complex dormancy that was not able to be overcome by the treatments utilized. However, this result is confounded by the age of the seeds used in the experiment. I also conclude that vegetative propagation of pygmy fringetree is highly dependent on the time of year cuttings are harvested. Further research of both seed and asexual propagation methods need to be explored before pygmy fringetree can be propagated on a commercial scale.
Resumo:
Previous results provided evidence that Cratylia mollis seed lectin (Cramoll 1,4) promotes Trypanosoma cruzi epimastigotes death by necrosis via a mechanism involving plasma membrane permeabilization to Ca(2+) and mitochondrial dysfunction due to matrix Ca(2+) overload. In order to investigate the mechanism of Ca(2+) -induced mitochondrial impairment, experiments were performed analyzing the effects of this lectin on T. cruzi mitochondrial fraction and in isolated rat liver mitochondria (RLM), as a control. Confocal microscopy of T. cruzi whole cell revealed that Cramoll 1,4 binding to the plasma membrane glycoconjugates is followed by its internalization and binding to the mitochondrion. Electrical membrane potential (∆Ψm ) of T. cruzi mitochondrial fraction suspended in a reaction medium containing 10 μM Ca(2+) was significantly decreased by 50 μg/ml Cramoll 1,4 via a mechanism insensitive to cyclosporine A (CsA, membrane permeability transition (MPT) inhibitor), but sensitive to catalase or 125 mM glucose. In RLM suspended in a medium containing 10 μM Ca(2+) this lectin, at 50 μg/ml, induced increase in the rate of hydrogen peroxide release, mitochondrial swelling, and ∆Ψm disruption. All these mitochondrial alterations were sensitive to CsA, catalase, and EGTA. These results indicate that Cramoll 1, 4 leads to inner mitochondrial membrane permeabilization through Ca(2+) dependent mechanisms in both mitochondria. The sensitivity to CsA in RLM characterizes this lectin as a MPT inducer and the lack of CsA effect identifies a CsA-insensitive MPT in T. cruzi mitochondria.
Resumo:
The aim of this study was to evaluate the effectiveness of 17% ethylene-diamine-tetra-acetic acid (EDTA) used alone or associated with 2% chlorhexidine gel (CHX) on intracanal medications (ICM) removal. Sixty single-rooted human teeth with fully formed apex were selected. The cervical and middle thirds of each canal were prepared with Gates Glidden drills and rotary files. The apical third was shaped with hand files. The specimens were randomly divided into two groups depending on the ICM used after instrumentation: calcium hydroxide Ca(OH)(2) +CHX or Ca(OH)(2) +sterile saline (SS). After seven days, each group was divided into subgroups according to the protocol used for ICM removal: instrumentation and irrigation either with EDTA, CHX+EDTA, or SS (control groups). All specimens were sectioned and processed for observation of the apical thirds by using scanning electron microscopy. Two calibrated evaluators attributed scores to each specimen. The differences between the protocols for ICM removal were analyzed with Kruskal-Wallis and Mann-Whitney U tests. Friedman and Wilcoxon signed rank tests were used for comparison between the score of debris obtained in each root canal third. Remains of Ca(OH)(2) were found in all specimens independently of the protocol and ICM used (P > 0.05). Seventeen percent EDTA showed the best results in removing ICM when used alone (P < 0.05), particularly in those associated with CHX. It was concluded that the chelating agent 17% EDTA significantly improved the removal of ICM when used alone. Furthermore, the type of the vehicle associated with Ca(OH)(2) also plays a role in the ICM removal.
Resumo:
Enormous amounts of pesticides are manufactured and used worldwide, some of which reach soils and aquatic systems. Glyphosate is a non-selective herbicide that is effective against all types of weeds and has been used for many years. It can therefore be found as a contaminant in water, and procedures are required for its removal. This work investigates the use of biopolymeric membranes prepared with chitosan (CS), alginate (AG), and a chitosan/alginate combination (CS/AG) for the adsorption of glyphosate present in water samples. The adsorption of glyphosate by the different membranes was investigated using the pseudo-first order and pseudo-second order kinetic models, as well as the Langmuir and Freundlich isotherm models. The membranes were characterized regarding membrane solubility, swelling, mechanical, chemical and morphological properties. The results of kinetics experiments showed that adsorption equilibrium was reached within 4 h and that the CS membrane presented the best adsorption (10.88 mg of glyphosate/g of membrane), followed by the CS/AG bilayer (8.70 mg of glyphosate/g of membrane). The AG membrane did not show any adsorption capacity for this herbicide. The pseudo-second order model provided good fits to the glyphosate adsorption data on CS and CS/AG membranes, with high correlation coefficient values. Glyphosate adsorption by the membranes could be fitted by the Freundlich isotherm model. There was a high affinity between glyphosate and the CS membrane and moderate affinity in the case of the CS/AG membrane. Physico-chemical characterization of the membranes showed low values of solubility in water, indicating that the membranes are stable and not soluble in water. The SEM and AFM analysis showed evidence of the presence of glyphosate on CS membranes and on chitosan face on CS/AG membranes. The results showed that the glyphosate herbicide can be adsorbed by chitosan membranes and the proposed membrane-based methodology was successfully used to treat a water sample contaminated with glyphosate. Biopolymer membranes therefore potentially offer a versatile method to eliminate agricultural chemicals from water supplies.
Resumo:
The aim of this study was to analyse seed dispersal and establishment of Solanum thomasiifolium in an area of nativo vegetation in Espirito Santo state on the southeastern Brazilian coast. Ten species of birds, the crab-eating fox (Cerdocyon thous), and one species of lizard (Tropidurus torquatus) fed on S. thomasiifolium fruits and dispersed viable seeds in their faeces. The proportional contribution of each of these groups to seed dispersal was 77% (birds), 19% (crab-eating fox) and 4% (lizards). Ants also contributed to seed dispersal. More seeds were deposited in vegetation islands than in the surrounding open areas. Germination rates of seeds collected directly from fruit (control), bird droppings, the faeces of crab-eating foxes and lizards were, respectively, 64, 64, 53, and 80 %. Differences among these rates were all significant, except between birds and control. Lizards were important as seed carriers between nearby islands and they expelled a higher proportion of viable seeds. Birds and the crab-eating foxes did not enhance seed germination, but promoted seed dispersal over a wider area. Plant architecture, fruit productivity, fruit characteristics and the diversity of frugivores are important for the success of S. thomasiifolium in habitat colonization.
Seed rain in areas with and without bamboo dominance within an urban fragment of the Atlantic Forest
Resumo:
Understanding the flow of diaspores is fundamental for determining plant population dynamics in a particular habitat, and a lack of seeds is a limiting factor in forest regeneration, especially in isolated forest fragments. Bamboo dominance affects forest structure and dynamics by suppressing or delaying the recruitment of and colonization by tree species as well as by inhibiting the survival and growth of adult trees. The goal of the present study was to determine whether dominance of the bamboo species Aulonemia aristulata (Döll) McClure in the forest understory influences species abundance and composition. We examined the seed rain at two noncontiguous sites (1.5 km apart) within an urban forest fragment, with and without bamboo dominance (BD+ and BD- areas, respectively). Sixty seed traps (0.5 m², with a 1-mm mesh) were set in the BD+ and BD- areas, and the seed rain was sampled from January to December 2007. Diaspores were classified according to dispersal syndrome, growth form and functional type of the species to which they belonged. There were significant differences between the two areas in terms of seed density, species diversity and dispersal syndrome. The BD+ area showed greater seed density and species diversity. In both areas, seed distribution was limited primarily by impaired dispersal. Bamboo dominance and low tree density resulted in fewer propagules in the seed rain. Our results suggest that low availability of seeds in the rain does not promote the maintenance of a degraded state, characterized by the presence of bamboo.
Resumo:
This study analyzed the effects of the unilateral removal and dissection of the masseter muscle on the facial growth of young rats. A total of 30 one-month-old Wistar rats were used. Unilateral complete removal of the masseter muscle was performed in the removal group, and detachment followed by repositioning of the masseter muscle was performed in the dissection group, while only surgical access was performed in the sham-operated group. The animals were sacrificed at three months of age. Axial radiographic projections of the skulls and lateral projections of the hemimandibles were taken. Cephalometric evaluations were made and the values obtained were submitted to statistical analyses. In the removal group, there were contour alterations of the angular process, and a significant homolateral difference in the length of the maxilla and a significant bilateral difference in the height of the mandibular body and the length of the mandible were observed. Comparison among groups revealed significance only in the removal group. It was concluded that the experimental removal of the masseter muscle during the growing period in rats induced atrophic changes in the angular process, as well as asymmetry of the maxilla and shortening of the whole mandible.
Resumo:
The aim of this study was to verify whether screw abutment lubrication can generate higher preload values compared to non-lubricated screws, a titanium abutment was screwed onto an implant analog and scanned with the Procera System to generate 20 zirconia abutments. MKIII Brånemark implants were clamped to a precision torque device, and the abutments were distributed in dry and wet groups with 10 specimens each. In the wet groups, the inner threads of the implants were filled with artificial saliva. All abutments were fastened with a Torqtite screw under 32 Ncm. Ten detorque measurements were performed per group pushing the reverse button of the Torque controller soon after screw tightening with values registered. The mean detorque values were calculated and compared by a Student's t test (?=0.05). The wet condition presented significantly higher mean detorque than the dry condition (31.5 ± 1.2 versus 27.5 ± 1.5 Ncm, respectively; p=0.0000024). In conclusion, there was always a loss in the initial torque values when the removal torque was measured under both conditions. The wet condition presented higher mean torque than the dry condition. Better preload values were established in the wet group, suggesting that the abutment screw must be lubricated in saliva to avoid further loosening.
Resumo:
The aim of the present work was to characterize changes in the protein profile throughout seed development in O. catharinensis, a recalcitrant species, by two-dimensional gel electrophoresis. Protein extraction was undertaken by using a thiourea/urea buffer, followed by a precipitation step with 10% TCA. Comparative analysis during seed development showed that a large number of proteins were exclusively detected in each developmental stage. The cotyledonary stage, which represents the transition phase between embryogenesis and the beginning of metabolism related to maturation, presents the highest number of stage-specific spots. Protein identification, through MS/MS analysis, resulted in the identification of proteins mainly related to oxidative metabolism and storage synthesis. These findings contribute to a better understanding of protein metabolism during seed development in recalcitrant seeds, besides providing information on established markers that could be useful in defining and improving somatic embryogenesis protocols, besides monitoring the development of somatic embryos in this species.
Resumo:
Physiological and biochemical aspects of assai palm during seed germination and early seedling growth were investigated. Seeds collected from plants growing in flooded and upland forests were used to determine the influence of normoxic (aerobic) and anoxic (anaerobic) conditions in germination and the initial and average time of development in the roots and shoots. After 75 days, seedlings germinated under normoxia were transferred to trays and submitted to flooding. Seed reserves (lipids, proteins, soluble sugars and starch) were monitored for quiescent and germinated seeds maintained under normoxic and anoxic conditions, as well as after 5, 10 and 20 days of seedling growth. Alcohol dehydrogenase (ADH) activity was quantified in roots and leaves of seedlings without or with flooding (partial and total). Seeds were not able to germinate under anoxia. Different strategies of storage mobilization of lipids, proteins, soluble sugars and starch were observed in seeds of each environment. ADH activity was induced by anoxia, with the highest level observed in the leaves. This study showed that, under normoxic conditions, the best developmental performance of assai palm seeds, from flooded or upland forest areas, during germination was associated with primary metabolites mobilization and seedling flooding tolerance with increased ADH activity. We conclude that the assai palm is well adapted to the anoxic conditions provoked by flooding.
Resumo:
The objective of the present study was to evaluate the effects of light and temperature on germination of Cereus pernambucensis seeds, a species of columnar cactus native to Brazil and naturally incident in the restinga. Cereus pernambucensis seeds were incubated under different temperatures, from 5 to 45 °C, with 5 °C intervals, and under alternating temperatures of 15-20 °C, 15-30 °C, 20-25 °C, 20-30 °C, 20-35 °C, 25-30 °C, 25-35 °C, and 30-35 °C, both under continuous white light and dark. The seeds were also incubated in a gradient of phytochrome photoequilibrium at 25 °C. The highest percentage germination in this species was between 25 and 30 °C. The minimum temperature was between 15 and 20 °C and the maximum between 35 and 40 °C. Alternating temperatures did not affect the percentage of seed germination, but it did alter the rate and synchronization indexes. Seeds incubated in the dark did not germinate under any of the conditions tested, indicating that this species when cultivated present light sensitive seeds controlled by phytochrome. The seeds can tolerate a lot of shade conditions, germinating under very low fluence response of phytochrome.
Resumo:
The influence of the golden lion tamarin (Leontopithecus rosalia) as a seed disperser was studied by monitoring two groups of tamarins from December 1998 to December 2000 (871.9 hours of observations) in a forest fragment in south-east Brazil. The tamarins consumed fruits of 57 species from at least 17 families. They ingested the seeds of 39 species, and 23 of these were put to germinate in the laboratory and/or in the field. L. rosalia is a legitimate seed disperser because the seeds of all species tested germinated after ingestion, albeit some in low percentages. These primates do not show a consistent effect in final seed germination, because they benefit some species while damaging others. Feces were examined for seeds that had been preyed upon or digested.
Resumo:
Ultraprecision diamond turning was used to evaluate the surface integrity of a carbon nanotube (CNT) composite as a function of the cutting conditions and the percentage of CNT in the epoxy matrix. The effects of cutting conditions on the chip morphology and surface roughness were analysed. The results showed that an increase in the percentage of CNT may influence the mechanism of material removal and consequently improve the quality of the machined surface. When smaller quantities of CNT (0.02 and 0.07 wt %) are present in the matrix, microcracks form within the cutting grooves (perpendicular to the cutting direction). This indicates that the amount of CNT on the epoxy matrix may have a direct influence on the mechanical properties of these materials. Chips removed from the CNT composite samples were analysed by scanning electron microscopy in order to correlate the material removal mechanism and the surface generation process. The area average surface roughness Sa was influenced by the material removal mechanism (Sa ranging from 0.28 to 1.1 mu m).