999 resultados para sediment enrichment index


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Drilling during Leg 167 at the California margin was scheduled to recover continuous sedimentary sections. Multiple advanced piston core (APC) holes drilled at different depth offsets provided core overlap in successive APCs. Correlation of high-resolution laboratory physical properties data from adjacent APC holes was used to compile composite depth sections for each site. The composite depth sections were used to confirm continuous recovery and enable high-resolution sampling. The meters composite depth (mcd) scale differs from the shipboard meters below seafloor (mbsf) scale because of (1) core expansion following recovery (MacKillop et al., 1995, doi:10.2973/odp.proc.sr.138.118.1995), (2) coring gaps, and (3) stretching/compression of sediment during coring (Lyle, Koizumi, Richter, et al., 1997, doi:10.2973/odp.proc.ir.167.1997). Moran (1997, doi:10.2973/odp.proc.sr.154.132.1997) calculated that sediment expansion accounted for 90%-95% of the Leg 154 depth offset between shipboard mbsf and the mcd scales. Terzaghi's one-dimensional theory of consolidation (Terzaghi, 1943) describes the response of sediments to stress loading and release. Mechanical loading in marine environments is provided by the buoyant weight of the overlying sediments. The load increases with depth below seabed, resulting in sediment volume reduction as water is "squeezed" out of the voids in the sediment. Stress release during core recovery results in expansion of the sediment and volume increase as water returns to the sediment. The sediment expansion or rebound defines the elastic properties of the sediment. In this study we examine the elastic deformation properties of sediments recovered from Sites 1020 and 1021. These results are used to (1) correct the laboratory index properties measurements to in situ values and (2) determine the contribution of sediment rebound to the depth offset between the mbsf and mcd scales.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Changes in the strength of Atlantic meridional overturning circulation (AMOC) are known to have profound impacts on global climate. Coupled modelling studies have suggested that, on annual to multi-decadal time scales, a slowdown of AMOC causes a deepening of the thermocline in the tropical Atlantic. However, this process has been poorly constrained by sedimentary geochemical records. Here, we reconstruct surface (UK'37 Index) and thermocline (TEXH86) water temperatures from the Guinea Plateau Margin (Eastern tropical Atlantic) over the last two glacial-interglacial cycles (~ 192 kyr). These paleotemperature records show that periods of reduced AMOC, as indicated by the d13 C benthic foraminiferal record from the same core, coincide with a reduction in the near-surface vertical temperature gradient, demonstrating for the first time that AMOC-induced tropical Atlantic thermocline adjustment exists on longer, millennial time scales. Modelling results support the interpretation of the geochemical records and show that thermocline adjustment is particularly pronounced in the eastern tropical Atlantic. Thus, variations in AMOC strength appear to be an important driver of the thermocline structure in the tropical Atlantic from annual to multi-millennial time scales.