940 resultados para seasonal changes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to validate noninvasive endocrine monitoring techniques for Pampas deer and to evaluate seasonal changes in testicular steroidogenic activity and their correlation to reproductive behavior, antler cycle and group size. Thus, fecal samples, behavioral data and observations of antler status were collected at monthly intervals during 1 year from free-ranging Pampas deer stags (three radio-collared individuals and 15 random individuals) living in Emas National Park, Brazil (18 degrees S latitude). Fecal steroids were extracted using 80% methanol and steroid concentrations were quantified by a commercial enzyme immunoassay (EIA). Fecal testosterone concentrations peaked in December-January (summer), March (early autumn) and in August-September (winter-spring), with minimal values from April-July. Reproductive behavior had two peaks, the first in December-January, characterized by predominately anogenital sniffing, flehmen, urine sniffing, chasing and mounting behavior, and the second peak in July-September (behavior primarily related to gland marking). There were significant correlations between fecal testosterone and reproductive behavior (r = 0.490), and between fecal testosterone and antler phases (r = 0.239). Antler casting and regrowth occurred under low testosterone concentrations, whereas velvet shedding was associated with high concentrations of testosterone. We inferred that Pampas deer stags exhibited a seasonal cycle that modulated sexual behavior and the antler cycle, and we concluded that fecal steroid analysis was a practical and reliable non-invasive method for the evaluation of the endocrine status of free-ranging Pampas deer. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seasonal changes in vegetative growth, leaf gas exchanges, carbon isotope discrimination (Delta) and carbohydrate status were monitored in de-fruited coffee trees (Coffea arabica L.) grown in the field, from October 1998 through September 1999, in Vicosa (20degrees45'S, 42degrees15'W, 650 m a.s.l.), southeastern Brazil. of the total growth over the 12-month study period, 78% occurred in the warm, rainy season (October-March), and 22% during the cool, dry season (April-September). Throughout the active growth period, the rate of net carbon assimilation (A) averaged 8.6 mumol m(-2) s(-1), against 3.4 mumol m(-2) s(-1) during the period of reduced growth. In the active period, growth, unlike A or Delta, was strongly negatively correlated with air temperature. In contrast, growth and A were both correlated positively, and Delta correlated negatively, with air temperature during the reduced growth period. However, the depressions of A and growth might have simply run in parallel, without any causal relationship. Changes in A appeared to be largely due to stomatal limitations in the active growing season, with non-stomatal ones prevailing in the slow growth period. Foliar carbohydrates seemed not to have contributed appreciably to changes in growth rates and photosynthesis. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen-binding properties, blood gases, and acid-base parameters were studied in tegu lizards, Tupinambis merianae, at different seasons and temperatures. Independent of temperature and pH, blood oxygen affinity was higher in dormant lizards than in those active during the summer. Haematocrit (Hct) and hemoglobin content ([Hb]) were greater in active lizards resulting in a higher oxygen-carrying capacity. Nucleoside triphosphate content ([NTP]) was reduced during dormancy, but the ratio between [NTP] and [Hb] remained unchanged. Dormancy was accompanied by an increase in plasma bicarbonate ([HCO(3)(-)]PI) and an elevation of arterial CO(2) partial pressure (P(aCO2)) and CO(2) content in the plasma (C(PlCO2)). These changes in acid-base parameters persist over a broad range of body temperatures. In vivo, arterial O(2) partial pressure (Pa(O2)) and O(2) content (Ca(O2)) were not affected by season and tended to increase with temperature. Arterial pH (pH(a)) of dormant animals is reduced compared to active lizards at body temperatures below 15 degreesC, while no significant difference was noticed at higher temperatures. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen consumption rate was measured continuously in young tegu lizards Tupinambis merianae exposed to 4 d at 25 degrees C followed by 7-10 d at 17 degrees C in constant dark at five different times of the year. Under these conditions, circadian rhythms in the rate of oxygen consumption persisted for anywhere from 1 d to the entire 2 wk in different individuals in all seasons except the winter. We also saw a progressive decline in standard oxygen consumption rate (at highly variable rates in different individuals) to a very low rate that was seasonally independent (ranging from 19.1 +/- 6.2 to 27.7 +/- 0.2 mL kg(-1) h(-1) across seasons). Although this degree of reduction appeared to take longer to invoke when starting from higher metabolic rates, tegu lizards reduced their metabolism to the low rates seen in winter dormancy at all times of the year when given sufficient time in the cold and dark. In the spring and summer, tegus reduced their standard metabolic rate (SMR) by 80%-90% over the experimental run, but only roughly 20%-30% of the total fall was due to the reduction in temperature; 70%-80% of the total fall occurred at constant temperature. By autumn, when the starting SMR on the first night at 25 degrees C was already reduced by 59%-81% (early and late autumn, respectively) from peak summer values, virtually all of the fall (63%-83%) in metabolism was due to the reduction in temperature. This suggests that the temperature-independent reduction of metabolism was already in place by autumn before the tegus had entered winter dormancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste estudo foi avaliar alterações sazonais no índice gonadossomático (IGS%), fator de condição (K) e proporção sexual, a fim de determinar o período de atividade reprodutiva do bagre Auchenipterichthys longimanus (Siluriformes: Auchenipteridae), a partir da análise de exemplares coletados em igarapés da Floresta Nacional de Caxiuanã, estado do Pará, Brasil. Através de coletas bimestrais entre julho de 2008 e julho de 2009, foram capturados 589 exemplares de A. longimanus, sendo 251 machos e 338 fêmeas. Dentre os machos, 171 exemplares foram classificados como adultos e 80 foram jovens, e dentre as fêmeas, 249 eram adultas e 89 jovens. Por meio do estabelecimento de uma equação senoidal, a análise do IGS% evidenciou uma assincronia reprodutiva entre os sexos, pois os machos obtiveram maiores valores de IGS% em janeiro e as fêmeas apresentaram seu pico em março. Para os valores de IGS% de machos, a equação senoide mostrou-se significante somente para os valores brutos (P=0,001), sendo não identificada uma tendência com os valores médios do IGS% (P=0,136). Para as fêmeas, os valores de significância da equação senoide para o IGS% foram obtidos tanto para os dados brutos (P=0,012) quanto para os dados médios (P=0,026). Para o Fator de Condição, a equação senoide demonstrou variação nos valores brutos e médios de machos adultos (P=0,02 e P=0,00, respectivamente) e nos valores brutos de fêmeas (P=0,04), refletindo diferenças nos padrões de investimento energético entre os sexos. Em relação à proporção sexual, foi observada uma maior frequência de capturas de fêmeas reprodutivas em relação aos machos nos meses de Janeiro e Março de 2009, sugerindo um padrão de segregação sexual com fins reprodutivos. Esses parâmetros são fundamentais na avaliação, conservação e manejo dos estoques naturais de peixes, assim como para subsidiar estratégias e procedimentos para a preservação e conservação da ictiofauna.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The foraging activity of Geotrigona mombuca Smith, 1863 was studied under natural conditions aiming to verify the influence of seasonal changes on daily flight activity and annual cycle of the colony. Daily flight activity was monitored for a year based on the observation and counting of foragers leaving and entering the hive, as well as the kind of material transported and meteorological factors such as day time, temperature and relative humidity. The influence of seasonal changes was evidenced by alterations on daily rhythm of flight activity and by differences on transportation of food resources, building material and garbage. These data indicate that forager behavior is related to daily microclimate conditions and it is synchronized with the requirements of colony annual cycle, which determines an intense pollen collection in the summer. Thus, the recomposition of the intranidal population in spring and summer can be ensured, which is characterized both for a higher intensity of flight activity and increase in garbage and resin transport, as well as the swarming process in the spring. In this way, an action targeting the preservation or management of the species in a natural environment should consider that survival and reproduction of the colony depends greatly on the amount of available pollen in late winter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentrations of phycobiliproteins (phycoerythrin and phycocyanin), chlorophyll-a and total soluble proteins were determined monthly in three strains (red, green and brown) of Gracilaria domingensis (Kützing) Sonder ex Dickie, collected from natural populations on the coast of Rio Grande do Norte, Brazil. In all the strains, pigment and protein concentrations were higher in the months of less sunlight and greater nitrogen availability and decreased gradually with increased sunlight and decreased nutrient concentration. The red strain showed higher concentrations of phycoerythrin and total soluble proteins. The difference in the concentration of biochemical components over the course of the year indicates species acclimation to different environmental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a great need for animal models of osteoporosis and sheep are a suitable large animal that meets most requirements. Since it is known that bone mass in humans responds to seasonal changes, this study investigated natural bone metabolism in sheep in order to better define the sheep as a model for osteoporosis. Bone mineral density (BMD), trabecular structure, biochemical markers of bone formation and resorption and estrogen were analysed over a period of 18 months. The lowest BMDs, measured by peripheral quantitative computed tomography (pQCT), were observed during winter. Thereafter, a 5.1% increase in BMD was observed during spring and summer (P<0.05). Bone resorption markers showed a variable pattern, with higher values in spring compared to autumn (P<0.001). The physiological estrus phase during autumn was detected by serum estrogen levels. The findings show that it is necessary to take seasonal variations into account if sheep are used to establish an animal model for osteoporosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For low-energy organisms such as bivalves, the costs of thermal compensation of biological rates (synonymous with acclimation or acclimatization) may be higher than the benefits. We therefore conducted two experiments to examine the effect of seasonal temperature changes on behaviour and oxygen consumption. In the first experiment, we examined the effects of seasonal temperature changes on the freshwater bivalve Anodonta anatina, taking measurements each month for a year at the corresponding temperature for that time of year. There was no evidence for compensation of burrowing valve closure duration or frequency, or locomotory speed. In the second experiment, we compared A. anatina at summer and winter temperatures (24 and 4°C, respectively) and found no evidence for compensation of the burrowing rate, valve closure duration or frequency, or oxygen consumption rates during burrowing, immediately after valve closure or at rest. Within the experimental limits of this study, the evidence suggests that thermal compensation of biological rates is not a strategy employed by A. anatina. We argue that this is due to either a lack of evolutionary pressure to acclimatize, or evolutionary pressure to not acclimatize. Firstly, there is little incentive to increase metabolic rate to enhance predatory ability given that these are filter feeders. Secondly, maintained low energetic demand, enhanced at winter temperatures, is essential for predator avoidance, i.e. valve closure. Thus, we suggest that the costs of acclimatization outweigh the benefits in A. anatina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial abundance, biomass and cell size were studied in the oligotrophic sediments of the Cretan Sea (Eastern Mediterranean), in order to investigate their response to the seasonal varying organic matter (OM) inputs. Sediment samples were collected on a seasonal basis along a transect of seven stations (ranging from 40 to 1570 m depth) using a multiple-corer. Bacterial parameters were related to changes in chloroplastic pigment equivalents (CPE), the biochemical composition (proteins, lipids, carbohydrates) of the sedimentary organic matter and the OM flux measured at a fixed station over the deep basin (1570 m depth). The sediments of the Cretan Sea represent a nutrient depleted ecosystem characterised by a poor quality organic matter. All sedimentary organic compounds were found to vary seasonally, and changes were more evident on the continental shelf than in deeper sediments. Bacterial abundance and biomass in the sediments of the Cretan Sea (ranging from 1.02 to 4.59 * 10**8 cells/g equivalent to 8.7 and 38.7 µgC/g) were quite high and their distribution appeared to be closely related to the input of fresh organic material. Bacterial abundance and biomass were sensitive to changes in nutrient availability, which also controls the average cell size and the frequency of dividing cells. Bacterial abundance increased up to 3-fold between August '94 and February '95 in response to the increased amount of sedimentary proteins and CPE, indicating that benthic bacteria were constrained more by changes in quality rather than the quantity of the sedimentary organic material. Bacterial responses to the food inputs were clearly detectable down to 10 cm depth. The distribution of labile organic compounds in the sediments appeared to influence the vertical patterns of bacterial abundance and biomass. Cell size decreased significantly with water depth. Bacterial abundance and biomass were characterised by clear seasonal changes in response to seasonal OM pulses. The strong coupling between protein flux and bacterial biomass together with the strong bacterial dominance over the total biomass suggest that the major part of the carbon flow was channelled through the bacteria and the benthic microbial loop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Culture studies of microorganisms have shown that the hydrogen isotopic composition of fatty acids depends on their metabolism, but there are only few environmental studies available to confirm this observation. Here we studied the seasonal variability of the deuterium/hydrogen (D/H) ratio of fatty acids in the coastal Dutch North Sea and compared this with the diversity of the phyto- and bacterioplankton. Over the year, the stable hydrogen isotopic fractionation factor epsilon between fatty acids and water ranged between -172 per mil and -237 per mil, the algal-derived polyunsaturated fatty acid nC20:5 being the most D-depleted and nC18:0 the least D-depleted fatty acid. The D-depleted nC20:5 is in agreement with culture studies, which indicates that photoautotrophic microorganisms produce fatty acids which are significantly depleted in D relative to water. The epsilon-lipid/water of all fatty acids showed a transient shift towards increased fractionation during the spring phytoplankton bloom, indicated by increasing chlorophyll a concentrations and relative abundance of the nC20:5 PUFA, suggesting increased contributions of photoautotrophy. Time periods with decreased fractionation (less negative epsilon-lipid/water values) can be explained by an increased contribution by heterotrophy to the fatty acid pool. Our results show that the hydrogen isotopic composition of fatty acids is a useful tool to assess the community metabolism of coastal plankton.