990 resultados para sea urchin


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell differentiation are associated with activation of cell lineage-specific genes. The $LpS{\it 1}\beta$ gene of Lytechinus pictus is activated at the late cleavage stage. $LpS{\it 1}\beta$ transcripts accumulate exclusively in aboral ectoderm lineages. Previous studies demonstrated two G-string DNA-elements, proximal and distal G-strings, which bind to an ectoderm-enriched nuclear factor. In order to define the cis-elements which control positive expression of the $LpS{\it 1}\beta$ gene, the regulatory region from $-$108 to +17 bp of the $LpS{\it 1}\beta$ gene promoter was characterized. The ectoderm G-string factor binds to a G/C-rich region larger than the G-string itself and the binding of the G-string factor requires sequences immediately downstream from the G-string. These downstream sequences are essential for full promoter activity. In addition, only 108 bp of $LpS{\it 1}\beta\ 5\sp\prime$ flanking DNA drives $LpS{\it 1}\beta$ gene expression in aboral ectoderm/mesenchyme cells. Therefore, for positive control of $LpS{\it 1}\beta$ gene expression, two regions of 5$\sp\prime$ flanking DNA are required: region I from base pairs $-$762 to $-$511, and region II, which includes the G/C-rich element, from base pairs $-$108 to $-$61. A mesenchyme cell repressor element is located within region I.^ DNA-binding proteins play key roles in determination of cell differentiation. The zinc finger domain is a DNA-binding domain present in many transcription factors. Based on homologies in zinc fingers, a zinc finger-encoding gene, SpKrox-1, was cloned from S. purpuratus. The putative SpKrox-1 protein has all structural characteristics of a transcription factor: four zinc fingers for DNA binding; acidic domain for transactivation; basic domain for nuclear targeting; and leucine zipper for dimerization. SpKrox-1 RNA transcripts showed a transient expression pattern which correlates largely with early embryonic development. The spatial expression of SpKrox-1 mRNA was distributed throughout the gastrula and larva ectodermal wall. However, SpKrox-1 was not expressed in pigment cells. The SpKrox-1 gene is thus a marker of a subset of SMCs or ectoderm cells. The structural features, and the transient temporal and restricted spatial expression patterns suggest that SpKrox-1 plays a role in a specific developmental event. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have reviewed the considerable body of research into the sea urchin phenomenon responsible for the alternation between macroalgal beds and coralline barrens in the northwestern Atlantic. In doing so, we have identified problems with both the scientific approach and the interpretation of results. Over a period of approximately 20 years, explanations for the phenomenon invoked four separate scenarios, which changed mainly as a consequence of extraneous events rather than experimental testing. Our specific concerns are that results contrary to the keystone-predator paradigm for the American lobster were circumvented, system components of the various scenarios became accepted without testing, and modifications of some components appeared arbitrary. Our review illustrates dilemmas that, we suggest, have hindered ecological progress in general. We argue for a more rigorous experimental approach, based on sound natural-history observations and strong inference. Moreover, we believe that the scientific community needs to be cautious about allowing paradigms to become established without adequate scrutiny.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To understand how a eukaryote achieves differential transcription of genes in precise spatial patterns, the molecular details of tissue specific expression of the Strongylocentrotus purpuratus Spec2a gene were investigated by functional studies of the cis-regulatory components in the upstream enhancer. Regional activation of Spec2a in the aboral ectoderm is conferred by a combination of activators and repressors. The positive regulators include previously identified SpOtx and a trans-regulatory factor binding at the CCAAT site in the Spec2a enhancer. The nuclear protein binding to the CCAAT box was determined to be the heterotrimeric CCAAT binding factor (SpCBF). SpCBF also mediates general activation in the ectoderm. The negative regulators consist of an oral ectoderm repressor (OER), an endoderm repressor (ENR), and an S. Purpuratus goosecoid homologue (SpGsc). OER functions to prevent expression in the oral ectoderm, while ENR is required to repress endoderm expression. SpGsc antagonizes the SpOtx function by competing for binding at SpOtx target genes in oral ectoderm, where it functions as an active repressor. Thus, SpOtx and SpGsc perform collectively to establish and maintain the oral-aboral axis. Finally, purification of ENR and OER proteins from sea urchin blastula stage nuclear extracts was performed using site-specific DNA-affmity chromatography. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important question in developmental biology is how embryonic cell types are derived from a fertilized egg. To address this question, this thesis investigates the mechanisms by which the aboral ectoderm-specific Spec2a gene is spatially and temporally regulated during sea urchin embryogenesis. The Spec2a gene of the sea urchin Strongylocentratus purpuratus has served as a valuable maker to understand the basis of lineage-specific gene activation and the role of transcription factors in cell fate specification. The hypothesis is that transcription factors responsible for cell type-specific gene activation are key components in the initial cell specification step. The Spec2a gene, which encodes a small cytosolic calcium-binding protein, is expressed exclusively in aboral ectoderm cell lineages. The 1516-bp control region of the Spec2a gene contains a 188-bp enhancer element required for temporal activation and aboral ectoderm/mesenchyme cell expression, while an unidentified element upstream of the enhancer represses expression in mesenchyme cells. Using an enhancer activation assay, combined with site-directed mutagenesis, I showed that three TAATCC/T sites within the enhancer are responsible for enhancer activity. Mutagenizing these sites and a fourth one just upstream abolished all activity from the Spec2a control region. A 77-bp DNA fragment from the Spec2a enhancer containing two of the TAATCC/T sites is sufficient for aboral ectoderm/mesenchyme cell expression. A cDNA encoding SpOtx, an orthodenticle-related protein, was cloned from S. purpuratus and shown to bind with high affinity to the TAATCC/T sequences within the Spec2a control region. SpOtx transcripts were found initially in all cells of the cleaving embryo, but they gradually became restricted to oral ectoderm and endoderm cells, suggesting that SpOtx might play a role in the initial temporal activation of the Spec2a gene and most likely has additional functions in the developing embryo. To reveal the broader biological functions of SpOtx, I injected SpOtx mRNA into living sea urchin eggs to determine what effects overexpressing the SpOtx protein might have on embryo development. SpOtx mRNA-injected embryos displayed dramatic alterations in development. Instead of developing into pluteus larvae with 15 different cell types, uniform epithelia balls were formed. These balls consisted of a thin layer of squamous cells with short cilia highly reminiscent of aboral ectoderm. Immunohistochemical staining and RT-PCR demonstrated that the SpOtx-injected embryoids expressed aboral ectoderm markers uniformly, but showed very weak or no expression of markers for non-aboral ectoderm cell types. These data strongly suggested that overexpression of SpOtx redirected the normal fate of non-aboral ectoderm cells to that of aboral ectoderm. These results show that SpOtx is involved in aboral ectoderm differentiation by activating aboral ectoderm-specific genes and that modulating its expression can lead to changes in cell fate. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The creation, preservation, and degeneration of cis-regulatory elements controlling developmental gene expression are fundamental genome-level evolutionary processes about which little is known. In this study, critical differences in cis-regulatory elements controlling the expression of the sea urchin aboral ectoderm-specific spec genes were identified and explored. In genomes of species within the Strongylocentrotidae family, multiple copies of a repetitive sequence element termed RSR were present, but RSRs were not detected in genomes of species outside Strongylocentrotidae. RSRs are invariably associated with spec genes, and in Strongylocentrotus purpuratus, the spec2a RSR functioned as a transcriptional enhancer displaying greater activity than RSRs from the spec1 or spec2c paralogs. Single base-pair differences at two cis-regulatory elements within the spec2a RSR greatly increased the binding affinities of four transcription factors: SpCCAAT-binding factor at one element and SpOtx, SpGoosecoid, and SpGATA-E at another. The cis-regulatory elements to which SpCCAAT-binding factor, SpOtx, SpGoosecoid, and SpGATA-E bound were recent evolutionary acquisitions that could act either to activate or repress transcription, depending on the cell type. These elements were found in the spec2a RSR ortholog in Strongylocentrotus pallidus but not in the RSR orthologs of Strongylocentrotus droebachiensis or Hemicentrotus pulcherrimus. These results indicate that spec genes exhibit a dynamic pattern of cis-regulatory element evolution while stabilizing selection preserves their aboral ectoderm expression domain. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cellular mechanisms of calcification in sea urchin larvae are still not well understood. Primary mesenchyme cells within the larval body cavity form a syncytium to secrete CaCO3 spicules from intracellular amorphous CaCO3 (ACC) stores. We studied the role of Na+K+2Cl- cotransporter (NKCC) in intracellular ACC accumulation and larval spicule formation of Strongylocentrotus droebachiensis. First, we incubated growing larvae with three different loop diuretics (azosemide, bumetanide, and furosemide) and established concentration-response curves. All loop diuretics were able to inhibit calcification already at concentrations that specifically inhibit NKCC. Calcification was most effectively inhibited by azosemide (IC50 = 6.5 µM), while larval mortality and swimming ability were not negatively impacted by the treatment. The inhibition by bumetanide (IC50 = 26.4 µM) and furosemide (IC50 = 315.4 µM) resembled the pharmacological fingerprint of the mammalian NKCC1 isoform. We further examined the effect of azosemide on the maintenance of cytoplasmic cords and on the occurrence of calcification vesicles using fluorescent dyes (calcein, FM1-43). Fifty micromolars of azosemide inhibited the maintenance of cytoplasmic cords and resulted in increased calcein fluorescence within calcification vesicles. The expression of NKCC in S. droebachiensis was verified by PCR and Western blot with a specific NKCC antibody. In summary, the pharmacological profile of loop diuretics and their specific effects on calcification in sea urchin larvae suggest that they act by inhibition of NKCC via repression of cytoplasmic cord formation and maintenance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land-based aquaculture facilities often utilize additional bicarbonate sources such as commercial sea salts that are designed to boost alkalinity in order to buffer seawater against reductions in pH. Despite these preventative measures, many facilities are likely to face occasional reductions in pH and corresponding reductions in carbonate saturation states due to the accumulation of metabolic waste products. We investigated the impact of reduced carbonate saturation states (Omega Ca, Omega Ar) on embryonic developmental rates, larval developmental rates, and echinoplutei skeletal morphometrics in the common edible sea urchin Lytechinus variegatus under high alkalinity conditions. Commercial artificial seawater was bubbled with a mixture of air and CO2 gas to reduce the carbonate saturation state. Rates of embryonic and larval development were significantly delayed in both the low and extreme low carbonate saturation state groups relative to the control at a given time. Although symmetry of overall skeletal body lengths was not affected, allometric relationships were significantly different between treatment groups. Larvae reared under ambient conditions had significantly greater postoral arm and overall body lengths relative to body lengths than larvae grown under extreme low carbonate saturation state conditions, indicating that extreme changes in the carbonate system affected not only developmental rates but also larval skeletal shape. Reduced rates of embryonic development and delayed and altered larval skeletal growth are likely to negatively impact larval culturing of L. variegatus in land-based, intensive culture situations where calcite and aragonite saturation states are lowered by the accumulation of metabolic waste products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to their low metabolism and apparent poor ion regulation ability, sea urchins could be particularly sensitive to ocean acidification resulting from increased dissolution of atmospheric carbon dioxide. Therefore, we evaluated the acid-base regulation ability of the coral reef sea urchin Echinometra mathaei and the impact of decreased pH on its growth and respiration activity. The study was conducted in two identical artificial reef mesocosms during seven weeks. Experimental tanks were maintained respectively at mean pHT 7.7 and 8.05 (with field-like night and day variations). The major physico-chemical parameters were identical, only pCO2 and pHT differed. Results indicate that E. mathaei can regulate the pH of its coelomic fluid in the considered range of pH, allowing a sustainable growth and ensuring an unaffected respiratory metabolism, at least at short term.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of pH ranging from 8.0 to 6.8 (total scale - pHT) on fertilization, cleavage and larval development until pluteus stage was assessed in an intertidal temperate sea urchin. Gametes were obtained from adults collected in two contrasting tide pools, one showing a significant nocturnal pH decrease (lowest pHT = 7.4) and another where pH was more stable (lowest pHT = 7.8). The highest pHT at which significant effects on fertilization and cleavage were recorded was 7.6. On the contrary, larval development was only affected below pHT 7.4, a value equal or lower than that reported for several subtidal species. This suggests that sea urchins inhabiting stressful intertidal environments produce offspring that may better resist future ocean acidification. Moreover, at pHT 7.4, the fertilization rate of gametes whose progenitors came from the tide pool with higher pH decrease was significantly higher, indicating a possible acclimatization or adaptation of gametes to pH stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification results from an increase in the concentrations of atmospheric carbon dioxide (CO2) impacts on marine calcifying species, which is predicted to become more pronounced in the future. By the end of this century, atmospheric pCO2 levels will have doubled relative to the pre-industrial levels of 280 ppm. However, the effects of pre-industrial pCO2 levels on marine organisms remain largely unknown. In this study, we investigated the effects of pre-industrial pCO2 conditions on the size of the pluteus larvae of sea urchins, which are known to be vulnerable to ocean acidification. The larval size of Hemicentrotus pulcherrimus significantly increased when reared at pre-industrial pCO2 level relative to the present one, and the size of Anthocidaris crassispina larvae decreased as the pCO2 levels increased from the pre-industrial level to the near future ones after 3 days' exposure. In this study, it is suggested that echinoid larvae responded to pre-industrial pCO2 levels. Ocean acidification may be affecting some sensitive marine calcifiers even at the present pCO2 level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification caused by an increase in pCO2 is expected to drastically affect marine ecosystem composition, yet there is much uncertainty about the mechanisms through which ecosystems may be affected. Here we studied sea urchins that are common and important grazers in the Mediterranean (Paracentrotus lividus and Arbacia lixula). Our study included a natural CO2 seep plus reference sites in the Aegean Sea off Greece. The distribution of A. lixula was unaffected by the low pH environment, whereas densities of P. lividus were much reduced. There was skeletal degradation in both species living in acidified waters compared to reference sites and remarkable increases in skeletal manganese levels (P. lividus had a 541% increase, A. lixula a 243% increase), presumably due to changes in mineral crystalline structure. Levels of strontium and zinc were also altered. It is not yet known whether such dramatic changes in skeletal chemistry will affect coastal systems but our study reveals a mechanism that may alter inter-species interactions.