245 resultados para scoliosis
Resumo:
Reduced SHOX gene expression has been demonstrated to be associated with all skeletal abnormalities in Turner syndrome, other than scoliosis (and kyphosis). There is evidence to suggest that Turner syndrome scoliosis is clinically and radiologically similar to idiopathic scoliosis, although the phenotypes are dissimilar. This pilot gene expression study used relative quantitative real-time PCR (qRT-PCR) of the SHOX (short stature on X) gene to determine whether it is expressed in vertebral body growth plates in idiopathic and congenital scoliosis. After vertebral growth plate dissection, tissue was examined histologically and RNA was extracted and its integrity was assessed using a Bio-Spec Mini, NanoDrop ND-1000 spectrophotometer and standard denaturing gel electrophoresis. Following cDNA synthesis, gene-specific optimization in a Corbett RotorGene 6000 real-time cycler was followed by qRT-PCR of vertebral tissue. Histological examination of vertebral samples confirmed that only growth plate was analyzed for gene expression. Cycling and melt curves were resolved in triplicate for all samples. SHOX abundance was demonstrated in congenital and idiopathic scoliosis vertebral body growth plates. SHOX expression was 11-fold greater in idiopathic compared to congenital (n = 3) scoliosis (p = 0.027). This study confirmed that SHOX was expressed in vertebral body growth plates, which implies that its expression may also be associated with the scoliosis (and kyphosis) of Turner syndrome. SHOX expression is reduced in Turner syndrome (short stature). In this study, increased SHOX expression was demonstrated in idiopathic scoliosis (tall stature) and congenital scoliosis.
Resumo:
Scoliosis is a deformity of the spine which affects children and adolescents, and remains a challenge to treat. This study measured the forces used during surgery to correct scoliosis and studied changes to spinal mechanics from the implantation of metal rods used to hold the spine straight. The results of this study will help surgeons and engineers understand how to straighten the spine more efficiently to provide patients with better outcomes.
Resumo:
The use of dual growing rods is a fusionless surgical approach to the treatment of early onset scoliosis (EOS) which aims to harness potential growth in order to correct spinal deformity. This study compared through in-vitro experiments the biomechanical response of two different rod designs under axial rotation loading. The study showed that a new design of telescoping growing rod preserved the rotational flexibility of the spine in comparison with rigid rods indicating them to be a more physiological way to improve the spinal deformity.
Resumo:
Background Adolescent Idiopathic Scoliosis is the most common type of spinal deformity whose aetiology remains unclear. Studies suggest that gravitational forces in the standing position play an important role in scoliosis progression, therefore anthropometric data are required to develop biomechanical models of the deformity. Few studies have analysed the trunk by vertebral level and none have performed investigations of the scoliotic trunk. The aim of this study was to determine the centroid, thickness, volume and estimated mass, for sections of the trunk in Adolescent Idiopathic Scoliosis patients. Methods Existing low-dose Computed Tomography scans were used to estimate vertebral level-by-level torso masses for 20 female Adolescent Idiopathic Scoliosis patients. ImageJ processing software was used to analyse the Computed Tomography images and enable estimation of the segmental torso mass corresponding to each vertebral level. Findings The patients’ mean age was 15.0 (SD 2.7) years with mean major Cobb Angle of 52° (SD 5.9) and mean patient weight of 58.2 (SD 11.6) kg. The magnitude of torso segment mass corresponding to each vertebral level increased by 150% from 0.6kg at T1 to 1.5kg at L5. Similarly, the segmental thickness corresponding to each vertebral level from T1-L5 increased inferiorly from a mean 18.5 (SD 2.2) mm at T1 to 32.8 (SD 3.4) mm at L5. The mean total trunk mass, as a percentage of total body mass, was 27.8 (SD 0.5) % which was close to values reported in previous literature. Interpretation This study provides new anthropometric reference data on segmental (vertebral level-by-level) torso mass in Adolescent Idiopathic Scoliosis patients, useful for biomechanical models of scoliosis progression and treatment.
Resumo:
Introduction Standing radiographs are the ‘gold standard’ for clinical assessment of adolescent idiopathic scoliosis (AIS), with the Cobb Angle used to measure the severity and progression of the scoliotic curve. Supine imaging modalities can provide valuable 3D information on scoliotic anatomy, however, due to changes in gravitational loading direction, the geometry of the spine alters between the supine and standing position which in turn affects the Cobb Angle measurement. Previous studies have consistently reported a 7-10° [1-3] Cobb Angle increase from supine to standing, however, none have reported the effect of endplate pre-selection and which (if any) curve parameters affect the supine to standing Cobb Angle difference. Methods Female AIS patients with right-sided thoracic major curves were included in the retrospective study. Clinically measured Cobb Angles from existing standing coronal radiographs and fulcrum bending radiographs [4] were compared to existing low-dose supine CT scans taken within 3 months of the reference radiograph. Reformatted coronal CT images were used to measure Cobb Angle variability with and without endplate pre-selection (end-plates selected on the radiographs used on the CT images). Inter and intra-observer measurement variability was assessed. Multi-linear regression was used to investigate whether there was a relationship between supine to standing Cobb Angle change and patient characteristics (SPSS, v.21, IBM, USA). Results Fifty-two patients were included, with mean age of 14.6 (SD 1.8) years; all curves were Lenke Type 1 with mean Cobb Angle on supine CT of 42° (SD 6.4°) and 52° (SD 6.7°) on standing radiographs. The mean fulcrum bending Cobb Angle for the group was 22.6° (SD 7.5°). The 10° increase from supine to standing is consistent with existing literature. Pre-selecting vertebral endplates was found to increase the Cobb Angle difference by a mean 2° (range 0-9°). Multi-linear regression revealed a statistically significant relationship between supine to standing Cobb Angle change with: fulcrum flexibility (p=0.001), age (p=0.027) and standing Cobb Angle (p<0.001). In patients with high fulcrum flexibility scores, the supine to standing Cobb Angle change was as great as 20°.The 95% confidence intervals for intra-observer and inter-observer measurement variability were 3.1° and 3.6°, respectively. Conclusion There is a statistically significant relationship between supine to standing Cobb Angle change and fulcrum flexibility. Therefore, this difference can be considered a measure of spinal flexibility. Pre-selecting vertebral endplates causes only minor changes.
Resumo:
INTRODUCTION Managing spinal deformities in young children is challenging, particularly early onset scoliosis (EOS). Surgical intervention is often required if EOS has been unresponsive to conservative treatment particularly with rapidly progressive curves. An emerging treatment option for EOS is fusionless scoliosis surgery. Similar to bracing, this surgical option potentially harnesses growth, motion and function of the spine along with correcting spinal deformity. Dual growing rods are one such fusionless treatment, which aims to modulate growth of the vertebrae. The aim of this study was to ascertain the extent to which semiconstrained growing rods (Medtronic, Sofamor, Danek, Memphis, TN) with a telescopic sleeve component, reduce rotational constraint on the spine compared with standard "constrained / rigid" rods and hence potentially provide a more physiological mechanical environment for the growing spine. METHODS Six 40-60kg English Large White porcine spines served as a model for the paediatric human spine. Each spine was dissected into a 7 level thoracolumbar multi-segment unit (MSU), removing all non-ligamentous soft tissues and leaving 3cm of ribs either side. Pure nondestructive axial rotation moments of ±4Nm at a constant rotation rate of 8deg.s-1 were applied to the mounted MSU spines using a biaxial Instron testing machine. Displacement of each vertebral level was captured using a 3D motion tracking system (Optotrak 3020, Northern Digital Inc, Waterloo, ON). Each spine was tested in an un-instrumented state first and then with appropriately sized semi-constrained growing rods and rigid rods in alternating sequence. The rods were secured by multi-axial pedicle screws (Medtronic CD Horizon) at levels 2 and 6 of the construct. The range of motion (ROM), neutral zone (NZ) size and stiffness (Nm.deg-1) were calculated from the Instron load-displacement data and intervertebral ROM was calculated through a MATLAB algorithm from Optotrak data. RESULTS Irrespective of the order of testing, rigid rods significantly reduced the total ROM compared with semi-constrained rods (p<0.05) with in a significantly stiffer spine for both left and right axial rotation (p<0.05). Analysing the intervertebral motion within the instrumented levels 2-6, rigid rods showed reduced ROM compared with semi-constrained growing rods and compared with un-instrumented motion segments. CONCLUSION Semi-constrained growing rods maintain similar stiffness in axial rotation to un-instrumented spines, while dual rigid rods significantly reduce axial rotation. Clinically the effect of semi-constrained growing rods as observed in this study is that they would be expected to allow growth via the telescopic rod components while maintaining the axial flexibility of the spine, which may reduce occurrence of the crankshaft phenomenon.
Resumo:
INTRODUCTION: Increasing health care costs, limited resources and increased demand makes cost effective and cost-efficient delivery of Adolescent Idiopathic Scoliosis (AIS) management paramount. Rising implant costs in deformity correction surgery have prompted analysis of whether high implant densities are justified. The objective of this study was to analyse the costs of thoracoscopic scoliosis surgery, comparing initial learning curve costs with those of the established technique and to the costs involved in posterior instrumented fusion from the literature. METHODS: 189 consecutive cases from April 2000 to July 2011 were assessed with a minimum of 2 years follow-up. Information was gathered from a prospective database covering perioperative factors, clinical and radiological outcomes, complications and patient reported outcomes. The patients were divided into three groups to allow comparison; 1. A learning curve cohort, 2. An intermediate cohort and 3. A third cohort of patients, using our established technique. Hospital finance records and implant manufacturer figures were corrected to 2013 costs. A literature review of AIS management costs and implant density in similar curve types was performed. RESULTS: The mean pre-op Cobb angle was 53°(95%CI 0.4) and was corrected postop to mean 22.9°(CI 0.4). The overall complication rate was 20.6%, primarily in the first cohort, with a rate of 5.6% in the third cohort. The average total costs were $46,732, operating room costs of $10,301 (22.0%) and ICU costs of $4620 (9.8%). The mean number of screws placed was 7.1 (CI 0.04) with a single rod used for each case giving average implant costs of $14,004 (29.9%). Comparison of the three groups revealed higher implant costs as the technique evolved to that in use today, from $13,049 in Group 1 to $14577 in Group 3 (P<0.001). Conversely operating room costs reduced from $10,621 in Group 1 to $7573 (P<0.001) in Group 3. ICU stay was reduced from an average of 1.2 to 0 days. In-patient stay was significantly (P=0.006) lower in Groups 2 and 3 (5.4 days) than Group 1 (5.9 days) (i.e. a reduction in cost of approximately $6,140). CONCLUSIONS: The evolution of our thoracoscopic anterior scoliosis correction has resulted in an increase in the number of levels fused and reduction in complication rate. Implant costs have risen as a result, however, there has been a concurrent decrease in those costs generated by operating room use, ICU and in-patient stay with increasing experience. Literature review of equivalent curve types treated posteriorly shows similar perioperative factors but higher implant density, 69-83% compared to the 50% in this study. Thoracoscopic Scoliosis surgery presents a low density, reliable, efficient and effective option for selected curves. A cost analysis of Thoracoscopic Scoliosis Surgery using financial records and a prospectively collected database of all patients since 2000, demonstrating a clear cost advantage compared to equivalent posterior instrumentation and fusion.
Resumo:
INTRODUCTION Managing spinal deformities in young children is challenging, particularly early-onset scoliosis (EOS). Any progressive spinal deformity particularly in early life presents significant health risks for the child and a challenge for the treating surgeon. Surgical intervention is often required if EOS has been unresponsive to conservative treatment particularly with rapidly progressive curves. An emerging treatment option particularly for EOS is fusionless scoliosis surgery. Similar to bracing this surgical option potentially harnesses growth, motion and function of the spine along with correcting spinal deformity. Dual growing rods is one such fusionless treatment, which aims to modulate growth of the vertebrae. The aim of this study was to ascertain the extent to which semi-constrained growing rods (Medtronic, Memphis, TN) with a telescopic sleeve component, reduce rotational constraint on the spine compared with standard rigid rods and hence potentially provide a more physiological mechanical environment for the growing spine. METHODS Six 40-60kg English Large White porcine spines served as a model for the paediatric human spine. Each spine was dissected into 7 level thoracolumbar multi-segment unit (MSU) spines, removing all non-ligamentous soft tissues. Appropriately sized semi-constrained growing rods and rigid rods were secured by multi-axial screws (Medtronic) prior to testing in alternating sequences for each spine. Pure nondestructive moments of +/4Nm at a constant rotation rate of 8deg/s was applied to the mounted MSU spines. Displacement of each level was captured using an Optotrak (Northern Digital Inc, Waterloo, ON). The range of motion (ROM), neutral zone (NZ) size and stiffness (Nm/deg) were calculated from the Instron load-displacement data and intervertebral ROM was calculated through a MATLAB algorithm from Optotrak data. RESULTS Irrespective of sequence order rigid rods significantly reduced the total ROM (deg) than compared to semi-constrained rods (p<0.05) and resulted in a significantly stiffer (Nm/deg) spine for both left and right axial rotation testing (p<0.05). Analysing the intervertebral motion within the instrumented levels, rigid rods showed reduced ROM (Deg) than compared to semi-constrained growing rods and the un-instrumented (UN-IN) test sequences. CONCLUSION The semi-constrained growing rods maintained rotation similar to UN-IN spines while the rigid rods showed significantly reduced axial rotation across all instrumented levels. Clinically the effect of semi-constrained growing rods evaluated in this study is that they will allow growth via the telescopic rod components while maintaining the axial rotation ability of the spine, which may also reduce the occurrence of the crankshaft phenomenon.
Resumo:
Background Supine imaging modalities provide valuable 3D information on scoliotic anatomy, but the altered spine geometry between the supine and standing positions affects the Cobb angle measurement. Previous studies report a mean 7°-10° Cobb angle increase from supine to standing, but none have reported the effect of endplate pre-selection or whether other parameters affect this Cobb angle difference. Methods Cobb angles from existing coronal radiographs were compared to those on existing low-dose CT scans taken within three months of the reference radiograph for a group of females with adolescent idiopathic scoliosis. Reformatted coronal CT images were used to measure supine Cobb angles with and without endplate pre-selection (end-plates selected from the radiographs) by two observers on three separate occasions. Inter and intra-observer measurement variability were assessed. Multi-linear regression was used to investigate whether there was a relationship between supine to standing Cobb angle change and eight variables: patient age, mass, standing Cobb angle, Risser sign, ligament laxity, Lenke type, fulcrum flexibility and time delay between radiograph and CT scan. Results Fifty-two patients with right thoracic Lenke Type 1 curves and mean age 14.6 years (SD 1.8) were included. The mean Cobb angle on standing radiographs was 51.9° (SD 6.7). The mean Cobb angle on supine CT images without pre-selection of endplates was 41.1° (SD 6.4). The mean Cobb angle on supine CT images with endplate pre-selection was 40.5° (SD 6.6). Pre-selecting vertebral endplates increased the mean Cobb change by 0.6° (SD 2.3, range −9° to 6°). When free to do so, observers chose different levels for the end vertebrae in 39% of cases. Multi-linear regression revealed a statistically significant relationship between supine to standing Cobb change and fulcrum flexibility (p = 0.001), age (p = 0.027) and standing Cobb angle (p < 0.001). The 95% confidence intervals for intra-observer and inter-observer measurement variability were 3.1° and 3.6°, respectively. Conclusions Pre-selecting vertebral endplates causes minor changes to the mean supine to standing Cobb change. There is a statistically significant relationship between supine to standing Cobb change and fulcrum flexibility such that this difference can be considered a potential alternative measure of spinal flexibility.
Resumo:
The primary aim of this study was to determine whether endplate pre-selection makes a difference to the Cobb Angle change between supine and standing which is known to occur in idiopathic scoliosis. A secondary aim of this study was to identify which (if any) patient characteristics were correlated with supine versus standing Cobb change. The study found that pre-selecting vertebral endplates causes only has a minor effect on supine to standing Cobb change in scoliosis. There is a statistically significant relationship between supine to standing Cobb Angle change and fulcrum flexibility. Therefore, supine to standing Cobb Angle change can be considered as a measure of spinal flexibility when both standing and supine images are clinically available.
Resumo:
Managing spinal deformities in young children is challenging, particularly early onset scoliosis (EOS). Surgical intervention is often required if EOS has been unresponsive to conservative treatment particularly with rapidly progressive curves. An emerging treatment option for EOS is fusionless scoliosis surgery. Similar to bracing, this surgical option potentially harnesses growth, motion and function of the spine along with correcting spinal deformity. Dual growing rods are one such fusionless treatment, which aims to modulate growth of the vertebrae. The aim of this study was to ascertain the extent to which semi-constrained growing rods (Medtronic Sofamor Danek Memphis, TN, USA) with a telescopic sleeve component, reduce rotational constraint on the spine compared with standard rigid rods and hence potentially provide a more physiological mechanical environment for the growing spine. This study found that semi-constrained growing rods would be expected to allow growth via the telescopic rod components while maintaining the axial flexibility of the spine and the improved capacity for final correction.
Resumo:
Background The use of dual growing rods is a fusionless surgical approach to the treatment of early onset scoliosis (EOS), which aims of harness potential growth in order to correct spinal deformity. The purpose of this study was to compare the in-vitro biomechanical response of two different dual rod designs under axial rotation loading. Methods Six porcine spines were dissected into seven level thoracolumbar multi-segmental units. Each specimen was mounted and tested in a biaxial Instron machine, undergoing nondestructive left/right axial rotation to peak moments of 4Nm at a constant rotation rate of 8deg.s-1. A motion tracking system (Optotrak) measured 3D displacements of individual vertebrae. Each spine was tested in an un-instrumented state first and then with appropriately sized semi-constrained growing rods and ‘rigid’ rods in alternating sequence. Range of motion, neutral zone size and stiffness were calculated from the moment-rotation curves and intervertebral ranges of motion were calculated from Optotrak data. Findings Irrespective of test sequence, rigid rods showed significantly reduction of total rotation across all instrumented levels (with increased stiffness) whilst semi-constrained rods exhibited similar rotation behavior to the un-instrumented (P<0.05). An 11% and 8% increase in stiffness for left and right axial rotation respectively and 15% reduction in total range of motion was recorded with dual rigid rods compared with semi-constrained rods. Interpretation Based on these findings, the semi-constrained growing rods do not increase axial rotation stiffness compared with un-instrumented spines. This is thought to provide a more physiological environment for the growing spine compared to dual rigid rod constructs.
Resumo:
Progression of spinal deformity in children was studied with Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) to identify how gravity affects the deformity and to determine the full three-dimensional character of the deformity. The CT study showed that gravity is significant in deformity progression in some patients which has implications for clinical patient management. The world first MRI study showed that the standard clinical measure used to define the extent of the deformity is inadequate and further use of three-dimensional MRI should be considered by spinal surgeons.
Resumo:
Study design Retrospective validation study. Objectives To propose a method to evaluate, from a clinical standpoint, the ability of a finite-element model (FEM) of the trunk to simulate orthotic correction of spinal deformity and to apply it to validate a previously described FEM. Summary of background data Several FEMs of the scoliotic spine have been described in the literature. These models can prove useful in understanding the mechanisms of scoliosis progression and in optimizing its treatment, but their validation has often been lacking or incomplete. Methods Three-dimensional (3D) geometries of 10 patients before and during conservative treatment were reconstructed from biplanar radiographs. The effect of bracing was simulated by modeling displacements induced by the brace pads. Simulated clinical indices (Cobb angle, T1–T12 and T4–T12 kyphosis, L1–L5 lordosis, apical vertebral rotation, torsion, rib hump) and vertebral orientations and positions were compared to those measured in the patients' 3D geometries. Results Errors in clinical indices were of the same order of magnitude as the uncertainties due to 3D reconstruction; for instance, Cobb angle was simulated with a root mean square error of 5.7°, and rib hump error was 5.6°. Vertebral orientation was simulated with a root mean square error of 4.8° and vertebral position with an error of 2.5 mm. Conclusions The methodology proposed here allowed in-depth evaluation of subject-specific simulations, confirming that FEMs of the trunk have the potential to accurately simulate brace action. These promising results provide a basis for ongoing 3D model development, toward the design of more efficient orthoses.
Resumo:
Introduction. Rett Syndrome is a rare genetic neurodevelopmental disorder usually affecting females. Scoliosis is a common comorbidity and spinal fusion may be recommended if severe. Little is known about long term outcomes. We examined the impact of spinal fusion on survival and risk of severe lower respiratory tract infection (LRTI) in Rett Syndrome. Methods Data were ascertained from hospital medical records, the Australian Rett Syndrome Database, a longitudinal and population-based registry of Rett Syndrome cases established in 1993, and the Australian Institute of Health and Welfare National Death Index database. An extended Cox regression model was used to estimate the effect of spinal surgery on survival in females who developed severe scoliosis (Cobb angle > 45 degrees). Generalized estimating equation modelling was used to estimate the effect of spinal surgery on the odds of developing severe LRTI. Results Severe scoliosis was identified in 140 cases (60.3%) of whom slightly fewer than half (48.6%) developed scoliosis prior to eight years of age. Scoliosis surgery was performed in 98 (69.0%) of those at a median age of 13 years 3 months (IQR 11 years 5 months – 14 years 10 months). After adjusting for mutation type and age of scoliosis onset, the rate of death was lower in the surgery group (HR 0.30, 95% CI 0.12, 0.74, P = 0.009) compared to those without surgery. Rate of death was particularly reduced for those with early onset scoliosis (HR 0.17, 95% CI 0.06, 0.52, P = 0.002). Spinal fusion was not associated with reduction in the occurrence of a severe LRTI overall (OR 0.60, 95%CI 0.27, 1.33, P=0.206) but was associated with a large reduction in odds of severe LRTI among those with early onset scoliosis (OR 0.32, 95%CI 0.11, 0.93, P=0.036). Conclusion With appropriate cautions, spinal fusion confers an advantage to life expectancy in Rett syndrome.