307 resultados para scavenger


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Free-radical processes underpin the thermo-oxidative degradation of polyolefins. Thus, to extend the lifetime of these polymers, stabilizers are generally added during processing to scavenge the free radicals formed as the polymer degrades. Nitroxide radical precursors, such as hindered amine stabilizers (HAS),1,2 are common polypropylene additives as the nitroxide moiety is a potent scavenger of polymer alkyl radicals (R¥). Oxidation of HAS by radicals formed during polypropylene degradation yields nitroxide radicals (RRNO¥), which rapidly trap the polymer degradation species to produce alkoxyamines, thus retarding oxidative polymer degradation. This increase in polymer stability is demonstrated by a lengthening of the “induction period” of the polymer (the time prior to a sharp rise in the oxidation of the polymer). Instrumental techniques such as chemiluminescence or infrared spectroscopy are somewhat limited in detecting changes in the polymer during the initial stages of degradation. Therefore, other methods for observing polymer degradation have been sought as the useful life of a polymer does not extend far beyond its “induction period”

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel antioxidant for the potential treatment of ischaemia was designed by incorporating an isoindoline nitroxide into the framework of the free radical scavenger edaravone. 5-(3-Methyl-pyrazol-5-ol-1-yl)-1,1,3,3-tetramethylisoindolin-2-yloxyl 7 was prepared by N-arylation of 3-methyl-5-pyrazolone with 5-iodo-1,1,3,3-tetramethylisoindoline-2-yloxyl 8 in the presence of catalytic copper(I)iodide. Evaluation of 7, its methoxyamine derivative 10 and 5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl (CTMIO) against edaravone 1 in ischaemic rat atrial cardiomyocytes revealed significant decreases in cell death after prolonged ischaemia for each agent; however the protective effect of the novel antioxidant 7 (showing greater than 85% reduction in cell death at 100 μM) was significantly enhanced over that of edaravone 1 alone. Furthermore, the activity for 7 was found to be equal to or greater than the potent cardioprotective agent N6-cyclopentyladenosine (CPA). The methoxyamine adduct 10 and edaravone 1 showed no difference between the extent of reduction in cell death whilst CTMIO had only a modest protective effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two representations have dominated public perceptions of the largest living marsupial carnivore, the Tasmanian devil. One is the voracious, hurricane-like innocent savage Taz of Looney Tunes cartoon fame. The other, familiar in nineteenth- and twentieth-century rural Tasmania, is the ferocious predator and scavenger that wantonly kills livestock — and perhaps even people, should they become immobilized in the wilderness at night. Devils can take prey nearly three times their size and eat more than a third of their body weight in a sitting. Even so, it is hard to imagine how this species, being only slightly larger than a fox terrier, could be so maligned in name and image...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrogen dioxide is used as a "radical scavenger" to probe the position of carbon-centered radicals within complex radical ions in the gas phase. As with analogous neutral radical reactions, this addition results in formation of an \[M + NO2](+) adduct, but the structural identity of this species remains ambiguous. Specifically, the question remains: do such adducts have a nitro-(RNO2) or nitrosoxy-(RONO) moiety, or are both isomers present in the adduct population? In order to elucidate the products of such reactions, we have prepared and isolated three distonic phenyl radical cations and observed their reactions with nitrogen dioxide in the gas phase by ion-trap mass spectrometry. In each case, stabilized \[M + NO2](+) adduct ions are observed and isolated. The structure of these adducts is probed by collision-induced dissociation and ultraviolet photodissociation action spectroscopy and a comparison made to the analogous spectra of authentic nitro-and nitrosoxy-benzenes. We demonstrate unequivocally that for the phenyl radical cations studied here, all stabilized \[M + NO2](+) adducts are exclusively nitrobenzenes. Electronic structure calculations support these mass spectrometric observations and suggest that, under low-pressure conditions, the nitrosoxy-isomer is unlikely to be isolated from the reaction of an alkyl or aryl radical with NO2. The combined experimental and theoretical results lead to the prediction that stabilization of the nitrosoxy-isomer will only be possible for systems wherein the energy required for dissociation of the RO-NO bond (or other low energy fragmentation channels) rises close to, or above, the energy of the separated reactants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric gas plasmas (AGPs) are able to selectively induce apoptosis in cancer cells, offering a promising alternative to conventional therapies that have unwanted side effects such as drug resistance and toxicity. However, the mechanism of AGP-induced cancer cell death is unknown. In this study, AGP is shown to up-regulate intracellular reactive oxygen species (ROS) levels and induce apoptosis in melanoma but not normal melanocyte cells. By screening genes involved in apoptosis, we identify tumor necrosis factor (TNF)-family members as the most differentially expressed cellular genes upon AGP treatment of melanoma cells. TNF receptor 1 (TNFR1) antagonist-neutralizing antibody specifically inhibits AGP-induced apoptosis signal, regulating apoptosis signal-regulating kinase 1 (ASK1) activity and subsequent ASK1-dependent apoptosis. Treatment of cells with intracellular ROS scavenger N-acetyl-l-cysteine also inhibits AGP-induced activation of ASK1, as well as apoptosis. Moreover, depletion of intracellular ASK1 reduces the level of AGP-induced oxidative stress and apoptosis. The evidence for TNF-signaling dependence of ASK1-mediated apoptosis suggests possible mechanisms for AGP activation and regulation of apoptosis-signaling pathways in tumor cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Imatinib, a small-molecule inhibitor of the Bcr-Abl kinase, is a successful drug for treating chronic myeloid leukemia (CML). Bcr-Abl kinase stimulates the production of H2O2, which in turn activates Abl kinase. We therefore evaluated whether N-acetyl cysteine (NAC), a ROS scavenger improves imatinib efficacy. Effects of imatinib and NAC either alone or in combination were assessed on Bcr-Abl(+) cells to measure apoptosis. Role of nitric oxide (NO) in NAC-induced enhanced cytotoxicity was assessed using pharmacological inhibitors and siRNAs of nitric oxide synthase isoforms. We report that imatinib-induced apoptosis of imatinib-resistant and imatinib-sensitive Bcr-Abl(+) CML cell lines and primary cells from CML patients is significantly enhanced by co-treatment with NAC compared to imatinib treatment alone. In contrast, another ROS scavenger glutathione reversed imatinib-mediated killing. NAC-mediated enhanced killing correlated with cleavage of caspases, PARP and up-regulation and down regulation of pro- and anti-apoptotic family of proteins, respectively. Co-treatment with NAC leads to enhanced production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS). Involvement of eNOS dependent NO in NAC-mediated enhancement of imatinib-induced cell death was confirmed by nitric oxide synthase (NOS) specific pharmacological inhibitors and siRNAs. Indeed, NO donor sodium nitroprusside (SNP) also enhanced imatinib-mediated apoptosis of Bcr-Abl(+) cells. NAC enhances imatinib-induced apoptosis of Bcr-Abl(+) cells by endothelial nitric oxide synthase-mediated production of nitric oxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is a major health concern and demands long-term efforts in developing strategies for screening and prevention. CRC has become a preventable disease as a consequence of a better understanding of colorectal carcinogenesis. However, current therapy is unsatisfactory and necessitates the exploration of other approaches for the prevention and treatment of cancer. Plant based products have been recognized as preventive with regard to the development of colon cancer. Therefore, the potential chemopreventive use and mechanism of action of Lebanese natural product were evaluated. Towards this aim the antitumor activity of Onopordum cynarocephalum and Centaurea ainetensis has been studied using in vitro and in vivo models. In vitro, both crude extracts were non cytotoxic to normal intestinal cells and inhibited the proliferation of colon cancer cells in a dose-dependent manner. In vivo, both crude extracts reduced the number of tumors by an average of 65% at weeks 20 (adenomas stage) and 30 (adenocarcinomas stage). The activity of the C. ainetensis extract was attributed to Salograviolide A, a guaianolide-type sesquiterpene lactone, which was isolated and identified through bio-guided fractionation. The mechanism of action of thymoquinone (TQ), the active component of Nigella sativa, was established in colon cancer cells using in vitro models. By the use of N-acetyl cysteine, a radical scavenger, the direct involvement of reactive oxygen species in TQ-induced apoptotic cells was established. The analytical detection of TQ from spiked serum and its protein binding were evaluated. The average recovery of TQ from spiked serum subjected to several extraction procedures was 2.5% proving the inability of conventional methods to analyze TQ from serum. This has been explained by the extensive binding (>98%) of TQ to serum and major serum components such as bovine serum albumin (BSA) and alpha-1-acid glycoprotein (AGP). Using mass spectrometry analysis, TQ was confirmed to bind covalently to the free cysteine in position 34 and 147 of the amino acid sequence of BSA and AGP, respectively. The results of this work put at the disposal for future development new plants with anti-cancer activities and enhance the understanding of the pharmaceutical properties of TQ, a prerequisite for its future clinical development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic resonance studies reveal a marked difference between the binding of α-tocopherol and that of the corresponding acetate (vitamin E acetate) with dipalmitoylphosphatidylcholine (DPPC) vesicles. This is reflected in differences in the phase-transition curves of the DPPC vesicles incorporated with the two compounds, as well as in the 13C relaxation times and line widths. A model for the incorporation of these molecules in lipid bilayers has been suggested. α-Tocopherol binds strongly with the lipids, possibly through a hydrogen bond formation between the hydroxyl group of the former and one of the oxygen atoms of the latter. The possibility of such a hydrogen bond formation is excluded in vitamin E acetate, which binds loosely through the normal hydrophobic interaction. The model for lipid-vitamin interaction explains the in vitro decomposition of H2O2 by α-tocopherol. α-Tocopherol in conjuction with H2O2 can also act as a free-radical scavenger in the lipid phase. The incorporation of α-tocopherol and vitamin E acetate in DPPC vesicles enhances the permeability of lipid bilayers for small molecules such as sodium ascorbate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aims to elucidate the modifications in the structure and functionality of the phospholipid matrix of biological membranes brought about by free radical-mediated oxidative damage of its molecular constituents. To this end, the surface properties of two oxidatively modified phospholipids bearing an aldehyde or carboxyl function at the end of truncated sn-2 acyl chain were studied using a Langmuir balance. The results obtained reveal both oxidized species to have a significant impact on the structural dynamics of phospholipid monolayers, as illustrated by the progressive changes in force-area isotherms with increasing mole fraction of the oxidized lipid component. Moreover, surface potential measurements revealed considerable modifications in the electric properties of oxidized phospholipid containing monolayers during film compression, suggesting a packing state-controlled reorientation of the intramolecular electric dipoles of the lipid headgroups and acyl chains. Based on the above findings, a model describing the conformational state of oxidized phospholipid molecules in biological membranes is proposed, involving the protrusion of the acyl chains bearing the polar functional groups out from the hydrocarbon phase to the surrounding aqueous medium. Oxidative modifications alter profoundly the physicochemical properties of unsaturated phospholipids and are therefore readily anticipated to have important implications for their interactions with membrane-associating molecules. Along these lines, the carboxyl group bearing lipid was observed to bind avidly the peripheral membrane protein cytochrome c. The binding was reversed following increase in ionic strength or addition of polyanionic ATP, thus suggesting it to be driven by electrostatic interactions between cationic residues of the protein and the deprotonated lipid carboxyl exposed to the aqueous phase. The presence of aldehyde function bearing oxidized phospholipid was observed to enhance the intercalation of four antimicrobial peptides into phospholipid monolayers and liposomal bilayers. Partitioning of the peptides to monolayers was markedly attenuated by the aldehyde scavenger methoxyamine, revealing it to be mediated by the carbonyl moiety possibly through efficient hydrogen bonding or, alternatively, formation of covalent adduct in form of a Schiff base between the lipid aldehydes and primary amine groups of the peptide molecules. Lastly, both oxidized phospholipid species were observed to bind with high affinity three small membrane-partitioning therapeutic agents, viz. chlorpromazine, haloperidol, and doxorubicin. In conclusion, the results of studies conducted using biomimetic model systems support the notion that oxidative damage influences the molecular architecture as well as the bulk physicochemical properties of phospholipid membranes. Further, common polar functional groups carried by phospholipids subjected to oxidation were observed to act as molecular binding sites at the lipid-water interface. It is thus plausible that oxidized phospholipid species may elicit cellular level effects by modulating integration of various membrane-embedded and surface-associated proteins and peptides, whose conformational state, oligomerization, and functionality is known to be controlled by highly specific lipid-protein interactions and proper physical state of the membrane environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The often discussed role of surface hydroxylation of TiO2 particles as an essential characterestics for their photocatalytic activity can be verified by preparing TiO2 powders by hydrothermal method since hydroxylated surface layers will be better retained on these particles formed in superheated water. Thus, fine powders of TiO2 (rutile) with high degree of crystallinity are formed from titanium oxychloride in the mixed solvent of water and 2-propanol at 160–230°C and 20–120 atm. The anatase phase is produced from the same medium when sulfate ion impurity is present, with Image . TiO2 powders are washed free of anions and 2-propanol by ultrafiltration and are Pt mounted by a photochemical method. Aqueous suspensions of both forms of TiO2 neither as such nor after Pt-loading, do not produce H2 on band gap illumination whereas, H2 is generated in presence of hole scavengers such as EDTA, TEOA, sulfite or hypophosphite. The effects of hole scavenger concentration, Pt : TiO2 ratio, particulate suspension density and the nature of hole scavengers on H2 production are presented. Platinised rutile powders are equally active as anatase in sacrificial systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric-pressure plasma (APP) has been successfully used to treat several types of cancers in vivo and in vitro, with the effect being primarily attributed to the generation of reactive oxygen species (ROS). However, the mechanisms by which APP induces apoptosis in cancer cells require further elucidation. In this study, the effects of APP on the expression of 500 genes in melanoma Mel007 cancer cells were examined. Pro-apoptotic phorbol-12-myristate-13-acetate-induced protein (PMAIP1), also known as NOXA, was highly expressed as a result of APP treatment in a dose-dependent manner. Blocking of ROS using scavenger NAC or silencing of NOXA gene by RNA interference inhibited the APP-induced NOXA genes upregulation and impaired caspases 3/7 mediated apoptosis, confirming the important role plasma-generated ROS species and pro-apoptotic NOXA play in APP-induced cancer cell death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carotid artery disease is the most prevalent etiologic precursor of ischemic stroke, which is a major health hazard and the second most common cause of death in the world. If a patient presents with a symptomatic high-grade (>70%) stenosis in the internal carotid artery, the treatment of choice is carotid endarterectomy. However, the natural course of radiologically equivalent carotid lesions may be clinically quite diverse, and the reason for that is unknown. It would be of utmost importance to develop molecular markers that predict the symptomatic phenotype of an atherosclerotic carotid plaque (CP) and help to differentiate vulnerable lesions from stable ones. The aim of this study was to investigate the morphologic and molecular factors that associate with stroke-prone CPs. In addition to immunohistochemistry, DNA microarrays were utilized to identify molecular markers that would differentiate between symptomatic and asymptomatic CPs. Endothelial adhesion molecule expression (ICAM-1, VCAM-1, P-selectin, and E-selectin) did not differ between symptomatic and asymptomatic patients. Denudation of endothelial cells was associated with symptom-generating carotid lesions, but in studies on the mechanism of decay of endothelial cells, markers of apoptosis (TUNEL, activated caspase 3) were found to be decreased in the endothelium of symptomatic lesions. Furthermore, markers of endothelial apoptosis were directly associated with those of cell proliferation (Ki-67) in all plaques. FasL expression was significantly increased on the endothelium of symptomatic CPs. DNA microarray analysis revealed prominent induction of specific genes in symptomatic CPs, including those subserving iron and heme metabolism, namely HO-1, and hemoglobin scavenger receptor CD163. HO-1 and CD163 proteins were also increased in symptomatic CPs and associated with intraplaque iron deposits, which, however, did not correlate with symptom status itself. ADRP, the gene for adipophilin, was also overexpressed in symptomatic CPs. Adipophilin expression was markedly increased in ulcerated CPs and colocalized with extravasated red blood cells and cholesterol crystals. Taken together, the phenotypic characteristics and the numerous possible molecular mediators of the destabilization of carotid plaques provide potential platforms for future research. The denudation of the endothelial lining observed in symptomatic CPs may lead to direct thromboembolism and maintain harmful oxidative and inflammatory processes, predispose to plaque microhemorrhages, and contribute to lipid accumulation into the plaque, thereby making it vulnerable to rupture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mononuclear, binuclear and trinuclear silver(l) complexes were obtained unexpectedly while probing the reactivity of diphosphazane ligands of the type X2PN(Pr-i)PXY towards the ruthenium-based precursor Ru(bipy)(2)Cl-2 center dot 2H(2)O, in the presence of a silver salt as a chloride scavenger. Subsequently, the reactions of AgX [X = Cl, NO3 or CF3SO3] with Ph2PN(R)PPh(Y) [R = H, Y = Ph; R = Pr-i, Y = Ph or OC6H3Me2-2,6] in a 1: 1 or 1:2 molar ratio have been investigated. Mononuclear or binuclear Ag(I) complexes containing either chelating or bridging diphosphazane ligands are obtained. Trinuclear silver(l) complexes are accessible by the treatment of diphosphazane ligands, Ph2PN(R)PPh2 [R = H, Pr-i] with AgCl using piperidine as the solvent. In the presence of a suitable chloride donor species, the mononuclear and binuclear complexes of Ph2PN(Pr-i)PPh2 are transformed slowly to the trinuclear complex [Ag-3(mu-Cl)(2){Ph2PN(Pr-i)PPh2}(3)]X, over a period 20 h. The structures of representative complexes have been confirmed by X-ray crystallography and the salient structural features are discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The simplified model of human tear fluid (TF) is a three-layered structure composed of a homogenous gel-like layer of hydrated mucins, an aqueous phase, and a lipid-rich outermost layer found in the tear-air interface. It is assumed that amphiphilic phospholipids are found adjacent to the aqueous-mucin layer and externally to this a layer composed of non-polar lipids face the tear-air interface. The lipid layer prevents evaporation of the TF and protects the eye, but excess accumulation of lipids may lead to drying of the corneal epithelium. Thus the lipid layer must be controlled and maintained by some molecular mechanisms. In the circulation, phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) mediate lipid transfers. The aim of this thesis was to investigate the presence and molecular mechanisms of lipid transfer proteins in human TF. The purpose was also to study the role of these proteins in the development of dry eye syndrome (DES). The presence of TF PLTP and CETP was studied by western blotting and mass spectrometry. The concentration of these proteins was determined by ELISA. The activities of the enzymes were determined by specific lipid transfer assays. To study the molecular mechanisms involved in PLTP mediated lipid transfer Langmuir monolayers and asymmetrical flow field-flow fractionation (AsFlFFF) was used. Ocular tissue samples were stained with monoclonal antibodies against PLTP to study the secretion route of PLTP. Heparin-Sepharose affinity chromatography was used for PLTP pull-down experiments and co-eluted proteins were identified with MALDI-TOF mass spectrometry or Western blot analysis. To study whether PLTP plays any functional role in TF PLTP-deficient mice were examined. The activity of PLTP was also studied in dry eye patients. PLTP is a component of normal human TF, whereas CETP is not. TF PLTP concentration was about 2-fold higher than that in human plasma. Inactivation of PLTP by heat treatment or immunoinhibition abolished the phospholipid transfer activity in tear fluid. PLTP was found to be secreted from lacrimal glands. PLTP seems to be surface active and is capable of accepting lipid molecules without the presence of lipid-protein complexes. The active movement of radioactively labeled lipids and high activity form of PLTP to acceptor particles suggested a shuttle model of PLTP-mediated lipid transfer. In this model, PLTP physically transports lipids between the donor and acceptor. Protein-protein interaction assays revealed ocular mucins as PLTP interaction partners in TF. In mice with a full deficiency of functional PLTP enhanced corneal epithelial damage, increased corneal permeability to carboxyfluorescein, and decreased corneal epithelial occludin expression was demonstrated. Increased tear fluid PLTP activity was observed among human DES patients. These results together suggest a scavenger property of TF PLTP: if the corneal epithelium is contaminated by hydrophobic material, PLTP could remove them and transport them to the superficial layer of the TF or, alternatively, transport them through the naso-lacrimal duct. Thus, PLTP might play an integral role in tear lipid trafficking and in the protection of the corneal epithelium. The increased PLTP activity in human DES patients suggests an ocular surface protective role for this lipid transfer protein.