865 resultados para scaling relations
Resumo:
In Natural Language Processing (NLP) symbolic systems, several linguistic phenomena, for instance, the thematic role relationships between sentence constituents, such as AGENT, PATIENT, and LOCATION, can be accounted for by the employment of a rule-based grammar. Another approach to NLP concerns the use of the connectionist model, which has the benefits of learning, generalization and fault tolerance, among others. A third option merges the two previous approaches into a hybrid one: a symbolic thematic theory is used to supply the connectionist network with initial knowledge. Inspired on neuroscience, it is proposed a symbolic-connectionist hybrid system called BIO theta PRED (BIOlogically plausible thematic (theta) symbolic-connectionist PREDictor), designed to reveal the thematic grid assigned to a sentence. Its connectionist architecture comprises, as input, a featural representation of the words (based on the verb/noun WordNet classification and on the classical semantic microfeature representation), and, as output, the thematic grid assigned to the sentence. BIO theta PRED is designed to ""predict"" thematic (semantic) roles assigned to words in a sentence context, employing biologically inspired training algorithm and architecture, and adopting a psycholinguistic view of thematic theory.
Resumo:
In-situ measurements in convective clouds (up to the freezing level) over the Amazon basin show that smoke from deforestation fires prevents clouds from precipitating until they acquire a vertical development of at least 4 km, compared to only 1-2 km in clean clouds. The average cloud depth required for the onset of warm rain increased by similar to 350 m for each additional 100 cloud condensation nuclei per cm(3) at a super-saturation of 0.5% (CCN0.5%). In polluted clouds, the diameter of modal liquid water content grows much slower with cloud depth (at least by a factor of similar to 2), due to the large number of droplets that compete for available water and to the suppressed coalescence processes. Contrary to what other studies have suggested, we did not observe this effect to reach saturation at 3000 or more accumulation mode particles per cm(3). The CCN0.5% concentration was found to be a very good predictor for the cloud depth required for the onset of warm precipitation and other microphysical factors, leaving only a secondary role for the updraft velocities in determining the cloud drop size distributions. The effective radius of the cloud droplets (r(e)) was found to be a quite robust parameter for a given environment and cloud depth, showing only a small effect of partial droplet evaporation from the cloud's mixing with its drier environment. This supports one of the basic assumptions of satellite analysis of cloud microphysical processes: the ability to look at different cloud top heights in the same region and regard their r(e) as if they had been measured inside one well developed cloud. The dependence of r(e) on the adiabatic fraction decreased higher in the clouds, especially for cleaner conditions, and disappeared at r(e)>=similar to 10 mu m. We propose that droplet coalescence, which is at its peak when warm rain is formed in the cloud at r(e)=similar to 10 mu m, continues to be significant during the cloud's mixing with the entrained air, cancelling out the decrease in r(e) due to evaporation.
Resumo:
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the invariant differential cross section for production of K(S)(0), omega, eta', and phi mesons in p + p collisions at root s 200 GeV. Measurements of omega and phi production in different decay channels give consistent results. New results for the omega are in agreement with previously published data and extend the measured p(T) coverage. The spectral shapes of all hadron transverse momentum distributions measured by PHENIX are well described by a Tsallis distribution functional form with only two parameters, n and T, determining the high-p(T) and characterizing the low-p(T) regions of the spectra, respectively. The values of these parameters are very similar for all analyzed meson spectra, but with a lower parameter T extracted for protons. The integrated invariant cross sections calculated from the fitted distributions are found to be consistent with existing measurements and with statistical model predictions.
Resumo:
Identified charged pion, kaon, and proton spectra are used to explore the system size dependence of bulk freeze-out properties in Cu + Cu collisions at root s(NN) = 200 and 62.4 GeV. The data are studied with hydrodynamically motivated blast-wave and statistical model frameworks in order to characterize the freeze-out properties of the system. The dependence of freeze-out parameters on beam energy and collision centrality is discussed. Using the existing results from Au + Au and pp collisions, the dependence of freeze-out parameters on the system size is also explored. This multidimensional systematic study furthers our understanding of the QCD phase diagram revealing the importance of the initial geometrical overlap of the colliding ions. The analysis of Cu + Cu collisions expands the system size dependence studies from Au + Au data with detailed measurements in the smaller system. The systematic trends of the bulk freeze-out properties of charged particles is studied with respect to the total charged particle multiplicity at midrapidity, exploring the influence of initial state effects.
Resumo:
Chaotic dynamical systems with two or more attractors lying on invariant subspaces may, provided certain mathematical conditions are fulfilled, exhibit intermingled basins of attraction: Each basin is riddled with holes belonging to basins of the other attractors. In order to investigate the occurrence of such phenomenon in dynamical systems of ecological interest (two-species competition with extinction) we have characterized quantitatively the intermingled basins using periodic-orbit theory and scaling laws. The latter results agree with a theoretical prediction from a stochastic model, and also with an exact result for the scaling exponent we derived for the specific class of models investigated. We discuss the consequences of the scaling laws in terms of the predictability of a final state (extinction of either species) in an ecological experiment.
Resumo:
Obesity has been recognized as a worldwide public health problem. It significantly increases the chances of developing several diseases, including Type II diabetes. The roles of insulin and leptin in obesity involve reactions that can be better understood when they are presented step by step. The aim of this work was to design software with data from some of the most recent publications on obesity, especially those concerning the roles of insulin and leptin in this metabolic disturbance. The most notable characteristic of this software is the use of animations representing the cellular response together with the presentation of recently discovered mechanisms on the participation of insulin and leptin in processes leading to obesity. The software was field tested in the Biochemistry of Nutrition web-based course. After using the software and discussing its contents in chatrooms, students were asked to answer an evaluation survey about the whole activity and the usefulness of the software within the learning process. The teaching assistants (TA) evaluated the software as a tool to help in the teaching process. The students' and TAs' satisfaction was very evident and encouraged us to move forward with the software development and to improve the use of this kind of educational tool in biochemistry classes.
Resumo:
Background: Depression in old age is a complex multifactorial phenomenon that is influenced by several biopsychosocial variables. Depressive symptoms are associated with the presence of chronic diseases, with being female, with low education and low income levels, and with poor perceived health assessment. In impoverished areas, older adults may have more physical disability, as they may have less access to health services. Therefore, they may be more likely to report depressive symptoms. Methods: Population-based cross-sectional research was undertaken using data from the FIBRA study conducted in Ermelino Matarazzo, a poor subdistrict of the city of Sao Paulo, Brazil. The participants comprised 303 elderly people, aged 65 years and over, who attended a single-session data collection effort carried out at community centers. The protocol comprised sociodemographic and self-reported health variables, and the Geriatric Depression Scale. Results: The majority of the subjects reported five or fewer symptoms of depression (79.21%), reported one or two self-reported chronic diseases (56.86%), declared themselves to have one or two self-reported health problems (46.15%), and had good perceived health assessment (40.27%). The presence of depressive symptoms was associated with a higher number of self-reported health problems, poor perceived health assessment, and lower schooling levels, in the total sample and in analyses including men only. For women, depressive symptoms were associated with the number of self-reported health problems and family income. Conclusion: The presence of health problems, such as falls and memory problems, lower perceived health, and low education (and low family income for women) were associated with a higher presence of depressive symptoms among elderly people in this poor area of Sao Paulo.
Resumo:
It is well known that structures subjected to dynamic loads do not follow the usual similarity laws when the material is strain rate sensitive. As a consequence, it is not possible to use a scaled model to predict the prototype behaviour. In the present study, this problem is overcome by changing the impact velocity so that the model behaves exactly as the prototype. This exact solution is generated thanks to the use of an exponential constitutive law to infer the dynamic flow stress. Furthermore, it is shown that the adopted procedure does not rely on any previous knowledge of the structure response. Three analytical models are used to analyze the performance of the technique. It is shown that perfect similarity is achieved, regardless of the magnitude of the scaling factor. For the class of material used, the solution outlined has long been sought, inasmuch as it allows perfect similarity for strain rate sensitive structures subject to impact loads. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We consider brightness/contrast-invariant and rotation-discriminating template matching that searches an image to analyze A for a query image Q We propose to use the complex coefficients of the discrete Fourier transform of the radial projections to compute new rotation-invariant local features. These coefficients can be efficiently obtained via FFT. We classify templates in ""stable"" and ""unstable"" ones and argue that any local feature-based template matching may fail to find unstable templates. We extract several stable sub-templates of Q and find them in A by comparing the features. The matchings of the sub-templates are combined using the Hough transform. As the features of A are computed only once, the algorithm can find quickly many different sub-templates in A, and it is Suitable for finding many query images in A, multi-scale searching and partial occlusion-robust template matching. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate how the summer and winter conditions affect the photosynthesis and water relations of well-watered orange trees, considering the diurnal changes in leaf gas exchange, chlorophyll (Chl) fluorescence, and leaf water potential (I) of potted-plants growing in a subtropical climate. The diurnal pattern of photosynthesis in young citrus trees was not significantly affected by the environmental changes when compared the summer and winter seasons. However, citrus plants showed higher photosynthetic performance in summer, when plants fixed 2.9 times more CO(2) during the diurnal period than in the winter season. Curiously, the winter conditions were more favorable to photosynthesis of citrus plants, when considering the air temperature (< 29 A degrees C), leaf-to-air vapor pressure difference (< 2.4 kPa) and photon flux density (maximum values near light saturation) during the diurnal period. Therefore, low night temperature was the main environmental element changing the photosynthetic performance and water relations of well-watered plants during winter. Lower whole-plant hydraulic conductance, lower shoot hydration and lower stomatal conductance were noticed during winter when compared to the summer season. In winter, higher ratio between the apparent electron transport rate and leaf CO(2) assimilation was verified in afternoon, indicating reduction in electron use efficiency by photosynthesis. The high radiation loading in the summer season did not impair the citrus photochemistry, being photoprotective mechanisms active. Such mechanisms were related to increases in the heat dissipation of excessive light energy at the PSII level and to other metabolic processes consuming electrons, which impede the citrus photoinhibition under high light conditions.
Resumo:
MSS membranes are a good candidate for CO cleanup in fuel cell fuel processing systems due to their ability to selectively permeate H2 over CO via molecular sieving. Successfully scaled up tubular membranes were stable under dry conditions to 400°C with H2 permeance as high as 2 x 10-6 mol.m-2.s^-1.Pa^-1 at 200 degrees C and H2/CO selectivity up to 6.4, indicating molecular sieving was the dominant mechanism. A novel carbonised template molecular sieve silica (CTMSS) technology gave the scaled up membranes resilience in hydrothermal conditions up to 400 degrees C in 34% steam and synthetic reformate, which is required for use in fuel cell CO cleanup systems.