860 resultados para scale-free networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho é estudado o modelo de Kuramoto num grafo completo, em redes scale-free com uma distribuição de ligações P(q) ~ q-Y e na presença de campos aleatórios com magnitude constante e gaussiana. Para tal, foi considerado o método Ott-Antonsen e uma aproximação "annealed network". Num grafo completo, na presença de campos aleatórios gaussianos, e em redes scale-free com 2 < y < 5 na presença de ambos os campos aleatórios referidos, foram encontradas transições de fase contínuas. Considerando a presença de campos aleatórios com magnitude constante num grafo completo e em redes scale-free com y > 5, encontraram-se transições de fase contínua (h < √2) e descontínua (h > √2). Para uma rede SF com y = 3, foi observada uma transição de fase de ordem infinita. Os resultados do modelo de Kuramoto num grafo completo e na presença de campos aleatórios com magnitude constante foram comparados aos de simulações, tendo-se verificado uma boa concordância. Verifica-se que, independentemente da topologia de rede, a constante de acoplamento crítico aumenta com a magnitude do campo considerado. Na topologia de rede scale-free, concluiu-se que o valor do acoplamento crítico diminui à medida que valor de y diminui e que o grau de sincronização aumenta com o aumento do número médio das ligações na rede. A presença de campos aleatórios com magnitude gaussiana num grafo completo e numa rede scale-free com y > 2 não destrói a transição de fase contínua e não altera o comportamento crítico do modelo de Kuramoto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Obligate endoparasites often lack particular metabolic pathways as compared to free-living organisms. This phenomenon comprises anabolic as well as catabolic reactions. Presumably, the corresponding enzymes were lost in adaptation to parasitism. Here we compare the predicted core metabolic graphs of obligate endoparasites and non-parasites (free living organisms and facultative parasites) in order to analyze how the parasites' metabolic networks shrunk in the course of evolution. Results Core metabolic graphs comprising biochemical reactions present in the presumed ancestor of parasites and non-parasites were reconstructed from the Kyoto Encyclopedia of Genes and Genomes. While the parasites' networks had fewer nodes (metabolites) and edges (reactions), other parameters such as average connectivity, network diameter and number of isolated edges were similar in parasites and non-parasites. The parasites' networks contained a higher percentage of ATP-consuming reactions and a lower percentage of NAD-requiring reactions. Control networks, shrunk to the size of the parasites' by random deletion of edges, were scale-free but exhibited smaller diameters and more isolated edges. Conclusions The parasites' networks were smaller than those of the non-parasites regarding number of nodes or edges, but not regarding network diameters. Network integrity but not scale-freeness has acted as a selective principle during the evolutionary reduction of parasite metabolism. ATP-requiring reactions in particular have been retained in the parasites' core metabolism while NADH- or NADPH-requiring reactions were lost preferentially.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analytically study the role played by the network topology in sustaining cooperation in a society of myopic agents in an evolutionary setting. In our model, each agent plays the Prisoner's Dilemma (PD) game with its neighbors, as specified by a network. Cooperation is the incumbent strategy, whereas defectors are the mutants. Starting with a population of cooperators, some agents are switched to defection. The agents then play the PD game with their neighbors and compute their fitness. After this, an evolutionary rule, or imitation dynamic is used to update the agent strategy. A defector switches back to cooperation if it has a cooperator neighbor with higher fitness. The network is said to sustain cooperation if almost all defectors switch to cooperation. Earlier work on the sustenance of cooperation has largely consisted of simulation studies, and we seek to complement this body of work by providing analytical insight for the same. We find that in order to sustain cooperation, a network should satisfy some properties such as small average diameter, densification, and irregularity. Real-world networks have been empirically shown to exhibit these properties, and are thus candidates for the sustenance of cooperation. We also analyze some specific graphs to determine whether or not they sustain cooperation. In particular, we find that scale-free graphs belonging to a certain family sustain cooperation, whereas Erdos-Renyi random graphs do not. To the best of our knowledge, ours is the first analytical attempt to determine which networks sustain cooperation in a population of myopic agents in an evolutionary setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A preoccupation with competition often dominates the study of governance. A focus on competition often unnecessarily precludes the possibility that regional institutions can suspend competition in certain areas and facilitate cooperation among potential rivals, thereby potentially contributing to their mutual success. In many ways companies cooperating through these types of networks have a greater degree of flexibility than firms which are forced to rely solely on hierarchies or markets for solutions to their problems. In order to fully understand how such networks work, this article first parses out differences in definitions of networks in order to understand how the type of network mentioned above actually differs from other uses of this term. Then it develops a theory of governance that goes beyond hierarchies and markets by demonstrating how this type of network can lead to reductions in transaction costs. This claim is illustrated on hand from examples of alternative forms of organization in Germany and Italy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The topology of real-world complex networks, such as in transportation and communication, is always changing with time. Such changes can arise not only as a natural consequence of their growth, but also due to major modi. cations in their intrinsic organization. For instance, the network of transportation routes between cities and towns ( hence locations) of a given country undergo a major change with the progressive implementation of commercial air transportation. While the locations could be originally interconnected through highways ( paths, giving rise to geographical networks), transportation between those sites progressively shifted or was complemented by air transportation, with scale free characteristics. In the present work we introduce the path-star transformation ( in its uniform and preferential versions) as a means to model such network transformations where paths give rise to stars of connectivity. It is also shown, through optimal multivariate statistical methods (i.e. canonical projections and maximum likelihood classification) that while the US highways network adheres closely to a geographical network model, its path-star transformation yields a network whose topological properties closely resembles those of the respective airport transportation network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex networks can be understood as graphs whose connectivity properties deviate from those of regular or near-regular graphs, which are understood as being ""simple"". While a great deal of the attention so far dedicated to complex networks has been duly driven by the ""complex"" nature of these structures, in this work we address the identification of their simplicity. The basic idea is to seek for subgraphs whose nodes exhibit similar measurements. This approach paves the way for complementing the characterization of networks, including results suggesting that the protein-protein interaction networks, and to a lesser extent also the Internet, may be getting simpler over time. Copyright (C) EPLA, 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The comprehensive characterization of the structure of complex networks is essential to understand the dynamical processes which guide their evolution. The discovery of the scale-free distribution and the small-world properties of real networks were fundamental to stimulate more realistic models and to understand important dynamical processes related to network growth. However, the properties of the network borders (nodes with degree equal to 1), one of its most fragile parts, remained little investigated and understood. The border nodes may be involved in the evolution of structures such as geographical networks. Here we analyze the border trees of complex networks, which are defined as the subgraphs without cycles connected to the remainder of the network (containing cycles) and terminating into border nodes. In addition to describing an algorithm for identification of such tree subgraphs, we also consider how their topological properties can be quantified in terms of their depth and number of leaves. We investigate the properties of border trees for several theoretical models as well as real-world networks. Among the obtained results, we found that more than half of the nodes of some real-world networks belong to the border trees. A power-law with cut-off was observed for the distribution of the depth and number of leaves of the border trees. An analysis of the local role of the nodes in the border trees was also performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper applies the concepts and methods of complex networks to the development of models and simulations of master-slave distributed real-time systems by introducing an upper bound in the allowable delivery time of the packets with computation results. Two representative interconnection models are taken into account: Uniformly random and scale free (Barabasi-Albert), including the presence of background traffic of packets. The obtained results include the identification of the uniformly random interconnectivity scheme as being largely more efficient than the scale-free counterpart. Also, increased latency tolerance of the application provides no help under congestion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss potential caveats when estimating topologies of 3D brain networks from surface recordings. It is virtually impossible to record activity from all single neurons in the brain and one has to rely on techniques that measure average activity at sparsely located (non-invasive) recording sites Effects of this spatial sampling in relation to structural network measures like centrality and assortativity were analyzed using multivariate classifiers A simplified model of 3D brain connectivity incorporating both short- and long-range connections served for testing. To mimic M/EEG recordings we sampled this model via non-overlapping regions and weighted nodes and connections according to their proximity to the recording sites We used various complex network models for reference and tried to classify sampled versions of the ""brain-like"" network as one of these archetypes It was found that sampled networks may substantially deviate in topology from the respective original networks for small sample sizes For experimental studies this may imply that surface recordings can yield network structures that might not agree with its generating 3D network. (C) 2010 Elsevier Inc All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The community of lawyers and their clients form a scale-free bipartite network that develops naturally as the outcome of the recommendation process through which lawyers form their client base. This process is an example of preferential attachment where lawyers with more clients are more likely to be recommended to new clients. Consumer litigation is an important market for lawyers. In large consumer societies, there always a signi cant amount of consumption disputes that escalate to court. In this paper we analyze a dataset of thousands of lawsuits, reconstructing the lawyer-client network embedded in the data. Analyzing the degree distribution of this network we noticed that it follows that of a scale-free network built by preferential attachment, but for a few lawyers with much larger client base than could be expected by preferential attachment. Incidentally, most of these also gured on a list put together by the judiciary of Lawyers which openly advertised the bene ts of consumer litigation. According to the code of ethics of their profession, lawyers should not stimulate clients into litigation, but it is not strictly illegal. From a network formation point of view, this stimulation can be seen as a separate growth mechanism than preferential attachment alone. In this paper we nd that this composite growth can be detected by a simple statistical test, as simulations show that lawyers which use both mechanisms quickly become the \Dragon-Kings" of the distribution of the number of clients per lawyer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method to study large scale neural networks is presented in this paper. The basis is the use of Feynman- like diagrams. These diagrams allow the analysis of collective and cooperative phenomena with a similar methodology to the employed in the Many Body Problem. The proposed method is applied to a very simple structure composed by an string of neurons with interaction among them. It is shown that a new behavior appears at the end of the row. This behavior is different to the initial dynamics of a single cell. When a feedback is present, as in the case of the hippocampus, this situation becomes more complex with a whole set of new frequencies, different from the proper frequencies of the individual neurons. Application to an optical neural network is reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many growing networks possess accelerating statistics where the number of links added with each new node is an increasing function of network size so the total number of links increases faster than linearly with network size. In particular, biological networks can display a quadratic growth in regulator number with genome size even while remaining sparsely connected. These features are mutually incompatible in standard treatments of network theory which typically require that every new network node possesses at least one connection. To model sparsely connected networks, we generalize existing approaches and add each new node with a probabilistic number of links to generate either accelerating, hyperaccelerating, or even decelerating network statistics in different regimes. Under preferential attachment for example, slowly accelerating networks display stationary scale-free statistics relatively independent of network size while more rapidly accelerating networks display a transition from scale-free to exponential statistics with network growth. Such transitions explain, for instance, the evolutionary record of single-celled organisms which display strict size and complexity limits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Networks exhibiting accelerating growth have total link numbers growing faster than linearly with network size and either reach a limit or exhibit graduated transitions from nonstationary-to-stationary statistics and from random to scale-free to regular statistics as the network size grows. However, if for any reason the network cannot tolerate such gross structural changes then accelerating networks are constrained to have sizes below some critical value. This is of interest as the regulatory gene networks of single-celled prokaryotes are characterized by an accelerating quadratic growth and are size constrained to be less than about 10,000 genes encoded in DNA sequence of less than about 10 megabases. This paper presents a probabilistic accelerating network model for prokaryotic gene regulation which closely matches observed statistics by employing two classes of network nodes (regulatory and non-regulatory) and directed links whose inbound heads are exponentially distributed over all nodes and whose outbound tails are preferentially attached to regulatory nodes and described by a scale-free distribution. This model explains the observed quadratic growth in regulator number with gene number and predicts an upper prokaryote size limit closely approximating the observed value. (c) 2005 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In studies of complex heterogeneous networks, particularly of the Internet, significant attention was paid to analyzing network failures caused by hardware faults or overload, where the network reaction was modeled as rerouting of traffic away from failed or congested elements. Here we model another type of the network reaction to congestion - a sharp reduction of the input traffic rate through congested routes which occurs on much shorter time scales. We consider the onset of congestion in the Internet where local mismatch between demand and capacity results in traffic losses and show that it can be described as a phase transition characterized by strong non-Gaussian loss fluctuations at a mesoscopic time scale. The fluctuations, caused by noise in input traffic, are exacerbated by the heterogeneous nature of the network manifested in a scale-free load distribution. They result in the network strongly overreacting to the first signs of congestion by significantly reducing input traffic along the communication paths where congestion is utterly negligible. © Copyright EPLA, 2012.