992 resultados para running test
Resumo:
This study examined the influence of different speed increments during treadmill exercise tests on peak treadmill speed (Vpeak) and its relationship with a 1-h treadmill running performance. 18 male recreational and amateur runners (10-km running pace: 10–15 km·h−1) performed, in an alternate order, 3 continuous incremental exercise tests with different speed increments (0.5, 1.0 and 2.0 km·h−1) on a motorized treadmill to determine Vpeak. Thereafter they undertook a 1-h time trial on a treadmill. Vpeak was determined as either (a) the highest speed that could be maintained for a complete minute (Vpeak-60 s), (b) the speed of the last complete stage (Vpeak-C), or (c) the speed of the last complete stage added to the product of the speed increment and the completed fraction of the incomplete stage (Vpeak-P). The Vpeak values were highly influenced by the different speed-incremented rates and the Vpeak-P determined during the protocol comprising speed increments of 1 km·h−1 presented the highest correlation with 1-h time trial performance (r=0.89). The results suggest that a protocol with speed increments comprising 1 km·h−1 and with a 3-min stage duration should be used as standard for the determination of Vpeak to assess aerobic fitness and predict endurance performance in recreational runners. Furthermore, the Vpeak-P should be used for the determination of Vpeak.
Resumo:
Purpose The purpose of the study was to investigate a possible association between the distance covered in the Hoff test with parameters of maximal oxygen uptake (V_O2MAX), anaerobic threshold, anaerobic fitness, and body composition of professional adult soccer players. Methods Twenty-five professional soccer players (20 ± 3 years) participated in the study. On different days the athletes performed: a graded incremental exercise test in a laboratory to measure V_O2MAX; a specific soccer field test called the Hoff test; a running anaerobic sprint test (RAST); an incremental test on an oval circuit to determine the velocity relative to anaerobic threshold (VAnT) and an estimation of body composition. Results The average V_O2MAX corresponded to 4.1 ± 0.1 L min-1 (54.1 ± 1.2 mL kg-1 min-1 ). The average distance covered during the Hoff test was 1,442.4 ± 30.0 m. The distance covered during the Hoff test showed significant correlations with absolute and expressed in an appropriated scale V_O2MAX (r = 0.44, p = 0.02; r = 0.42, p = 0.02, respectively) while no significant differences were found with body composition, VAnT and RAST variables. Conclusions The present study demonstrated that the distance covered during the Hoff test has weak correlation with V_O2MAX determined in treadmill running, and no correlation with VAnT, body composition and RAST outcomes, probably due to the non-specificity of the proposed tests when associated with the Hoff test.
Resumo:
Twelve participants ran (9 km . h(-1)) to test two types of running shoes: replica and original shoes. Ground reaction force, plantar pressure and electromyographic activity were recorded. The shoes were tested randomly and on different days. Comparisons between the two experimental conditions were made by analysis of variance (ANOVA) test (P <= 0.05). The time to first peak, loading rate of the first peak and impulse of the first 75 ms of stance were significantly different between the shoes (P <= 0.05), revealing an increase of impact forces for the replica shoes. The peak plantar pressure values were significantly higher (P <= 0.05) when wearing replica shoes. During running, the contact area was significantly smaller (P <= 0.05) for the replica shoe. The electromyographic activity of the analysed muscles did not show changes between the two shoes in running. These findings suggest that the use of replica running shoes can increase the external load applied to the human body, but may not change the muscle activity pattern during locomotion. This new mechanical situation may increase the risk of injuries in these movements.
Resumo:
The purpose of the present study was to verify whether a downhill running protocol was able to induce non-functional overreaching in > 75% of mice. Mice were divided into control (C), trained (TR) and overtrained (OTR) groups. Bodyweight and food intake were recorded weekly. The incremental load test (ILT) and the exhaustive test (ET) were used to measure performance before and after aerobic training and overtraining protocols. Although the bodyweight of the OTR group was lower than that of the C group at the end of Week 7, the food intake of the OTR group was higher than that of the C and TR groups at the end of Week 8. Evaluation of results from the ILT and ET revealed significant intra- and inter-group differences: whereas the parameters measured by both tests increased significantly in the TR group, they were significantly decreased in the OTR group. In conclusion, this new overtraining protocol based on downhill running sessions induced non-functional overreaching in 100% of mice.
Resumo:
The reduction of friction and wear in systems presenting metal-to-metal contacts, as in several mechanical components, represents a traditional challenge in tribology. In this context, this work presents a computational study based on the linear Archard's wear law and finite element modeling (FEM), in order to analyze unlubricated sliding wear observed in typical pin on disc tests. Such modeling was developed using finite element software Abaqus® with 3-D deformable geometries and elastic–plastic material behavior for the contact surfaces. Archard's wear model was implemented into a FORTRAN user subroutine (UMESHMOTION) in order to describe sliding wear. Modeling of debris and oxide formation mechanisms was taken into account by the use of a global wear coefficient obtained from experimental measurements. Such implementation considers an incremental computation for surface wear based on the nodal displacements by means of adaptive mesh tools that rearrange local nodal positions. In this way, the worn track was obtained and new surface profile is integrated for mass loss assessments. This work also presents experimental pin on disc tests with AISI 4140 pins on rotating AISI H13 discs with normal loads of 10, 35, 70 and 140 N, which represent, respectively, mild, transition and severe wear regimes, at sliding speed of 0.1 m/s. Numerical and experimental results were compared in terms of wear rate and friction coefficient. Furthermore, in the numerical simulation the stress field distribution and changes in the surface profile across the worn track of the disc were analyzed. The applied numerical formulation has shown to be more appropriate to predict mild wear regime than severe regime, especially due to the shorter running-in period observed in lower loads that characterizes this kind of regime.
Resumo:
PURPOSE Stress urinary incontinence (SUI) affects women of all ages including young athletes, especially those involved in high-impact sports. To date, hardly any studies are available testing pelvic floor muscles (PFM) during sports activities. The aim of this study was the description and reliability test of six PFM electromyography (EMG) variables during three different running speeds. The secondary objective was to evaluate whether there was a speed-dependent difference between the PFM activity variables. METHODS This trial was designed as an exploratory and reliability study including ten young healthy female subjects to characterize PFM pre-activity and reflex activity during running at 7, 9 and 11 km/h. Six variables for each running speed, averaged over ten steps per subject, were presented descriptively, tested regarding their reliability (Friedman, ICC, SEM, MD) and speed difference (Friedman). RESULTS PFM EMG variables varied between 67.6 and 106.1 %EMG, showed no systematic error and were low for SEM and MD using the single value model. Applying the average model over ten steps, ICC (3,k) were >0.75 and SEM and MD about 50 % lower than for the single value model. Activity was found to be highest in 11 km/h. CONCLUSION EMG variables showed excellent ICC and very low SEM and MD. Further studies should investigate inter-session reliability and PFM reactivity patterns of SUI patients using the average over ten steps for each variable as it showed very high ICC and very low SEM and MD. Subsequently, longer running distances and other high-impact sports disciplines could be studied.
Resumo:
This Doctoral Thesis entitled Contribution to the analysis, design and assessment of compact antenna test ranges at millimeter wavelengths aims to deepen the knowledge of a particular antenna measurement system: the compact range, operating in the frequency bands of millimeter wavelengths. The thesis has been developed at Radiation Group (GR), an antenna laboratory which belongs to the Signals, Systems and Radiocommunications department (SSR), from Technical University of Madrid (UPM). The Radiation Group owns an extensive experience on antenna measurements, running at present four facilities which operate in different configurations: Gregorian compact antenna test range, spherical near field, planar near field and semianechoic arch system. The research work performed in line with this thesis contributes the knowledge of the first measurement configuration at higher frequencies, beyond the microwaves region where Radiation Group features customer-level performance. To reach this high level purpose, a set of scientific tasks were sequentially carried out. Those are succinctly described in the subsequent paragraphs. A first step dealed with the State of Art review. The study of scientific literature dealed with the analysis of measurement practices in compact antenna test ranges in addition with the particularities of millimeter wavelength technologies. Joint study of both fields of knowledge converged, when this measurement facilities are of interest, in a series of technological challenges which become serious bottlenecks at different stages: analysis, design and assessment. Thirdly after the overview study, focus was set on Electromagnetic analysis algorithms. These formulations allow to approach certain electromagnetic features of interest, such as field distribution phase or stray signal analysis of particular structures when they interact with electromagnetic waves sources. Properly operated, a CATR facility features electromagnetic waves collimation optics which are large, in terms of wavelengths. Accordingly, the electromagnetic analysis tasks introduce an extense number of mathematic unknowns which grow with frequency, following different polynomic order laws depending on the used algorithmia. In particular, the optics configuration which was of our interest consisted on the reflection type serrated edge collimator. The analysis of these devices requires a flexible handling of almost arbitrary scattering geometries, becoming this flexibility the nucleus of the algorithmia’s ability to perform the subsequent design tasks. This thesis’ contribution to this field of knowledge consisted on reaching a formulation which was powerful at the same time when dealing with various analysis geometries and computationally speaking. Two algorithmia were developed. While based on the same principle of hybridization, they reached different order Physics performance at the cost of the computational efficiency. Inter-comparison of their CATR design capabilities was performed, reaching both qualitative as well as quantitative conclusions on their scope. In third place, interest was shifted from analysis - design tasks towards range assessment. Millimetre wavelengths imply strict mechanical tolerances and fine setup adjustment. In addition, the large number of unknowns issue already faced in the analysis stage appears as well in the on chamber field probing stage. Natural decrease of dynamic range available by semiconductor millimeter waves sources requires in addition larger integration times at each probing point. These peculiarities increase exponentially the difficulty of performing assessment processes in CATR facilities beyond microwaves. The bottleneck becomes so tight that it compromises the range characterization beyond a certain limit frequency which typically lies on the lowest segment of millimeter wavelength frequencies. However the value of range assessment moves, on the contrary, towards the highest segment. This thesis contributes this technological scenario developing quiet zone probing techniques which achieves substantial data reduction ratii. Collaterally, it increases the robustness of the results to noise, which is a virtual rise of the setup’s available dynamic range. In fourth place, the environmental sensitivity of millimeter wavelengths issue was approached. It is well known the drifts of electromagnetic experiments due to the dependance of the re sults with respect to the surrounding environment. This feature relegates many industrial practices of microwave frequencies to the experimental stage, at millimeter wavelengths. In particular, evolution of the atmosphere within acceptable conditioning bounds redounds in drift phenomena which completely mask the experimental results. The contribution of this thesis on this aspect consists on modeling electrically the indoor atmosphere existing in a CATR, as a function of environmental variables which affect the range’s performance. A simple model was developed, being able to handle high level phenomena, such as feed - probe phase drift as a function of low level magnitudes easy to be sampled: relative humidity and temperature. With this model, environmental compensation can be performed and chamber conditioning is automatically extended towards higher frequencies. Therefore, the purpose of this thesis is to go further into the knowledge of millimetre wavelengths involving compact antenna test ranges. This knowledge is dosified through the sequential stages of a CATR conception, form early low level electromagnetic analysis towards the assessment of an operative facility, stages for each one of which nowadays bottleneck phenomena exist and seriously compromise the antenna measurement practices at millimeter wavelengths.
Resumo:
This study investigated the changes in cardiorespiratory response and running performance of 9 male ?Talent Identification? (TID) and 6 male Senior Elite (SE) Spanish National Squad triathletes during a specific cycle-run test. The TID and SE triathletes (initial age 15.2±0.7 vs. 23.8±5.6 years, p=0.03; tests through the competitive period and the preparatory period, respectively, of two consecutive seasons: Test 1 was an incremental cycle test to determine the ventilatory threshold (Thvent); Test 2 (C-R) was 30 min constant load cycling at the Thvent power output followed by a 3-km time trial run; and Test 3 (R) was an isolated 3-km time trial control run, in randomized counterbalanced order. In both seasons the time required to complete the C-R 3-km run was greater than for R in TID (11:09±00:24 vs. 10:45±00:16 min:ss, pmenor que 0.01; and 10:24±00:22 vs. 10:04±00:14, p=0.006, for season 2005/06 and 2006/07, respectively) and SE (10:15±00:19 vs. 09:45±00:30, pmenor que 0.001 and 09:51±00:26 vs. 09:46±00:06, p= 0.02 for season 2005/06 and 2006/07, respectively). Compared to the first season, completion of the time trial run was faster in the second season (6.6%, pmenor que 0.01 and 6.4%, pmenor que 0.01, for C-R and R test, respectively) only in TID. Changes in post-cycling run performance were accompanied by changes in pacing strategy but only slight or non-significant changes in the cardiorespiratory response. Thus, the negative effect of cycling on performance may persist, independently of the period, over two consecutive seasons in TID and SE triathletes; however A improvements over time suggests that monitoring running pacing strategy after cycling may be a useful tool to control performance and training adaptations in TID. O2max 77.0±5.6 vs. 77.8±3.6 mL·kg-1·min-1, NS) underwent three TE D EP C C
Resumo:
Includes index.
Resumo:
DANTAS, Rodrigo Assis Neves; NÓBREGA, Walkíria Gomes da; MORAIS FILHO, Luiz Alves; MACÊDO, Eurides Araújo Bezerra de ; FONSECA , Patrícia de Cássia Bezerra; ENDERS, Bertha Cruz; MENEZES, Rejane Maria Paiva de; TORRES , Gilson de Vasconcelos. Paradigms in health care and its relationship to the nursing theories: an analytical test . Revista de Enfermagem UFPE on line. v.4,n.2, p.16-24.abr/jun. 2010. Disponível em < http://www.ufpe.br/revistaenfermagem/index.php/revista>.
Aerobic and anaerobic test performance among elite male football players in different team positions
Resumo:
The purpose was to determine the magnitude of aerobic and anaerobic performance factors among elite male football players in different team positions. Thirty-nine players from the highest Swedish division classified as defenders (n=18), midfield players (n=12) or attackers (n=9) participated. Their mean (± sd) age, height and body mass (bm) were 24.4 (±4.7) years, 1.80 (±5.9)m and 79 (±7.6)kg, respectively. Running economy (RE) and anaerobic threshold (AT) was determined at 10, 12, 14, and 16km/h followed by tests of maximal oxygen uptake (VO2max). Maximal strength (1RM) and average power output (AP) was performed in squat lifting. Squat jump (SJ), counter-movement jump with free arm swing (CMJa), 45m maximal sprint and the Wingate test was performed. Average VO2max for the whole population (WP) was 57.0mL O2•kg-1min-1 . The average AT occurred at about 84% of VO2max. 1RM per kg bm0.67 was 11.9±1.3kg. Average squat power in the whole population at 40% 1RM was 70±9.5W per kg bm0.67 . SJ and CMJa were 38.6±3.8cm and 48.9±4.4cm, respectively. The average sprint time (45m) was 5.78± 0.16s. The AP in the Wingate test was 10.6±0.9W•kg-1 . The average maximal oxygen uptake among players in the highest Swedish division was lower compared to international elite players but the Swedish players were better off concerning the anaerobic threshold and in the anaerobic tests. No significant differences were revealed between defenders, midfielders or attackers concerning the tested parameters presented above.
Resumo:
The purpose was to determine running economy and lactate threshold among a selection of male elite football players with high and low aerobic power. Forty male elite football players from the highest Swedish division (“Allsvenskan”) participated in the study. In a test of running economy (RE) and blood lactate accumulation the participants ran four minutes each at 10, 12, 14, and 16 km•h-1 at horizontal level with one minute rest in between each four minutes interval. After the last sub-maximal speed level the participants got two minutes of rest before test of maximal oxygen uptake (VO2max). Players that had a maximal oxygen uptake lower than the average for the total population of 57.0 mL O2•kg-1•minute-1 were assigned to the low aerobic power group (LAP) (n=17). The players that had a VO2max equal to or higher than 57.0 mL O2•kg-1•minute-1 were selected for the high aerobic power group (HAP) (n=23). The VO2max was significantly different between the HAP and LAP group. The average RE, measured as oxygen uptake at 12, 14 and 16km•h-1 was significantly lower but the blood lactate concentration was significantly higher at 14 and 16 km•h-1 for theLAP group compared with the HAP group.
Aerobic and anaerobic test performance among elite male football players in different team positions
Resumo:
The purpose was to determine the magnitude of aerobic and anaerobic performance factors among elite male football players in different team positions. Thirty-nine players from the highest Swedish division classified as defenders (n=18), midfield players (n=12) or attackers (n=9) participated. Their mean (± sd) age, height and body mass (bm) were 24.4 (±4.7) years, 1.80 (±5.9)m and 79 (±7.6)kg, respectively. Running economy (RE) and anaerobic threshold (AT) was determined at 10, 12, 14, and 16km/h followed by tests of maximal oxygen uptake (VO2max). Maximal strength (1RM) and average power output (AP) was performed in squat lifting. Squat jump (SJ), counter-movement jump with free arm swing (CMJa), 45m maximal sprint and the Wingate test was performed. Average VO2max for the whole population (WP) was 57.0mL O2•kg-1min-1. The average AT occurred at about 84% of VO2max. 1RM per kg bm0.67 was 11.9±1.3kg. Average squat power in the whole population at 40% 1RM was70±9.5W per kg bm0.67. SJ and CMJa were 38.6±3.8cm and 48.9±4.4cm,respectively. The average sprint time (45m) was 5.78± 0.16s. The AP in the Wingate test was 10.6±0.9W•kg-1. The average maximal oxygen uptake among players in the highest Swedish division was lower compared to international elite players but the Swedish players were better off concerning the anaerobic threshold and in the anaerobic tests. No significant differences were revealed between defenders, midfielders or attackers concerning the tested parameters presented above.
Resumo:
DANTAS, Rodrigo Assis Neves; NÓBREGA, Walkíria Gomes da; MORAIS FILHO, Luiz Alves; MACÊDO, Eurides Araújo Bezerra de ; FONSECA , Patrícia de Cássia Bezerra; ENDERS, Bertha Cruz; MENEZES, Rejane Maria Paiva de; TORRES , Gilson de Vasconcelos. Paradigms in health care and its relationship to the nursing theories: an analytical test . Revista de Enfermagem UFPE on line. v.4,n.2, p.16-24.abr/jun. 2010. Disponível em < http://www.ufpe.br/revistaenfermagem/index.php/revista>.
Resumo:
Our aim was to determine the normative reference values of cardiorespiratory fitness (CRF) and to establish the proportion of subjects with low CRF suggestive of future cardio-metabolic risk.