874 resultados para robust tori
Resumo:
A highly robust hydrogel device made from a single biopolymer formulation is reported. Owing to the presence of covalent and non-covalent crosslinks, these engineered systems were able to (i) sustain a compressive strength of ca. 20 MPa, (ii) quickly recover upon unloading, and (iii) encapsulate cells with high viability rates.
Resumo:
Load-bearing soft tissues such as cartilage, blood vessels and muscles are able to withstand a remarkable compressive stress of several MPa without fracturing. Interestingly, most of these structural tissues are mainly composed of water and in this regard, hydrogels, as highly hydrated 3D-crosslinked polymeric networks, constitute a promising class of materials to repair lesions on these tissues. Although several approaches can be employed to shape the mechanical properties of artificial hydrogels to mimic the ones found on biotissues, critical issues regarding, for instance, their biocompatibility and recoverability after loading are often neglected. Therefore, an innovative hydrogel device made only of chitosan (CHI) was developed for the repair of robust biological tissues. These systems were fabricated through a dual-crosslinking process, comprising a photo- and an ionic-crosslinking step. The obtained CHIbased hydrogels exhibited an outstanding compressive strength of ca. 20 MPa at 95% of strain, which is several orders of magnitude higher than those of the individual components and close to the ones found in native soft tissues. Additionally, both crosslinking processes occur rapidly and under physiological conditions, enabling cellsâ encapsulation as confirmed by high cell survival rates (ca. 80%). Furthermore, in contrast with conventional hydrogels, these networks quickly recover upon unloading and are able to keep their mechanical properties under physiological conditions as result of their non-swell nature.
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2009
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2009
Resumo:
Income distribution in Spain has experienced a substantial improvement towards equalisation during the second half of the seventies and the eighties; a period during which most OECD countries experienced the opposite trend. In spite of the many recent papers on the Spanish income distribution, the period covered by those stops in 1990. The aim of this paper is to extent the analysis to 1996 employing the same methodology and the same data set (ECPF). Our results not only corroborate the (decreasing inequality) trend found by others during the second half of the eighties, but also suggest that this trend extends over the first half of the nineties. We also show that our main conclusions are robust to changes in the equivalence scale, to changes in the definition of income and to potential data contamination. Finally, we analyse some of the causes which may be driving the overall picture of income inequality using two decomposition techniques. From this analyses three variables emerge as the major responsible factors for the observed improvement in the income distribution: education, household composition and socioeconomic situation of the household head.
Resumo:
In this paper, we develop numerical algorithms that use small requirements of storage and operations for the computation of invariant tori in Hamiltonian systems (exact symplectic maps and Hamiltonian vector fields). The algorithms are based on the parameterization method and follow closely the proof of the KAM theorem given in [LGJV05] and [FLS07]. They essentially consist in solving a functional equation satisfied by the invariant tori by using a Newton method. Using some geometric identities, it is possible to perform a Newton step using little storage and few operations. In this paper we focus on the numerical issues of the algorithms (speed, storage and stability) and we refer to the mentioned papers for the rigorous results. We show how to compute efficiently both maximal invariant tori and whiskered tori, together with the associated invariant stable and unstable manifolds of whiskered tori. Moreover, we present fast algorithms for the iteration of the quasi-periodic cocycles and the computation of the invariant bundles, which is a preliminary step for the computation of invariant whiskered tori. Since quasi-periodic cocycles appear in other contexts, this section may be of independent interest. The numerical methods presented here allow to compute in a unified way primary and secondary invariant KAM tori. Secondary tori are invariant tori which can be contracted to a periodic orbit. We present some preliminary results that ensure that the methods are indeed implementable and fast. We postpone to a future paper optimized implementations and results on the breakdown of invariant tori.
Resumo:
This paper studies the behavior of a central bank that seeks to conduct policy optimally while having imperfect credibility and harboring doubts about its model. Taking the Smets-Wouters model as the central bank.s approximating model, the paper's main findings are as follows. First, a central bank.s credibility can have large consequences for how policy responds to shocks. Second, central banks that have low credibility can bene.t from a desire for robustness because this desire motivates the central bank to follow through on policy announcements that would otherwise not be time-consistent. Third, even relatively small departures from perfect credibility can produce important declines in policy performance. Finally, as a technical contribution, the paper develops a numerical procedure to solve the decision-problem facing an imperfectly credible policymaker that seeks robustness.
Resumo:
This paper uses sequential stochastic dominance procedures to compare the joint distribution of health and income across space and time. It is the First application of which we are aware of methods to compare multidimensional distributions of income and health using procedures that are robust to aggregation techniques. The paper's approach is more general than comparisons of health gradients and does not require the estimation of health equivalent incomes. We illustrate the approach by contrasting Canada and the US using comparable data. Canada dominates the US over the lower bidimensional welfare distribution of health and income, though not generally in terms of the uni-dimensional distribution of health or income. The paper also finds that welfare for both Canadians and Americans has not unambiguously improved during the last decade over the joint distribution of income and health, in spite of the fact that the uni-dimensional distributions of income have clearly improved during that period.
Resumo:
Microsatellite instability (MSI) occurs in 10-20% of colorectal tumours and is associated with good prognosis. Here we describe the development and validation of a genomic signature that identifies colorectal cancer patients with MSI caused by DNA mismatch repair deficiency with high accuracy. Microsatellite status for 276 stage II and III colorectal tumours has been determined. Full-genome expression data was used to identify genes that correlate with MSI status. A subset of these samples (n = 73) had sequencing data for 615 genes available. An MSI gene signature of 64 genes was developed and validated in two independent validation sets: the first consisting of frozen samples from 132 stage II patients; and the second consisting of FFPE samples from the PETACC-3 trial (n = 625). The 64-gene MSI signature identified MSI patients in the first validation set with a sensitivity of 90.3% and an overall accuracy of 84.8%, with an AUC of 0.942 (95% CI, 0.888-0.975). In the second validation, the signature also showed excellent performance, with a sensitivity 94.3% and an overall accuracy of 90.6%, with an AUC of 0.965 (95% CI, 0.943-0.988). Besides correct identification of MSI patients, the gene signature identified a group of MSI-like patients that were MSS by standard assessment but MSI by signature assessment. The MSI-signature could be linked to a deficient MMR phenotype, as both MSI and MSI-like patients showed a high mutation frequency (8.2% and 6.4% of 615 genes assayed, respectively) as compared to patients classified as MSS (1.6% mutation frequency). The MSI signature showed prognostic power in stage II patients (n = 215) with a hazard ratio of 0.252 (p = 0.0145). Patients with an MSI-like phenotype had also an improved survival when compared to MSS patients. The MSI signature was translated to a diagnostic microarray and technically and clinically validated in FFPE and frozen samples.
Resumo:
This work covers two aspects. First, it generally compares and summarizes the similarities and differences of state of the art feature detector and descriptor and second it presents a novel approach of detecting intestinal content (in particular bubbles) in capsule endoscopy images. Feature detectors and descriptors providing invariance to change of perspective, scale, signal-noise-ratio and lighting conditions are important and interesting topics in current research and the number of possible applications seems to be numberless. After analysing a selection of in the literature presented approaches, this work investigates in their suitability for applications information extraction in capsule endoscopy images. Eventually, a very good performing detector of intestinal content in capsule endoscopy images is presented. A accurate detection of intestinal content is crucial for all kinds of machine learning approaches and other analysis on capsule endoscopy studies because they occlude the field of view of the capsule camera and therefore those frames need to be excluded from analysis. As a so called “byproduct” of this investigation a graphical user interface supported Feature Analysis Tool is presented to execute and compare the discussed feature detectors and descriptor on arbitrary images, with configurable parameters and visualized their output. As well the presented bubble classifier is part of this tool and if a ground truth is available (or can also be generated using this tool) a detailed visualization of the validation result will be performed.
Resumo:
Humans can recognize categories of environmental sounds, including vocalizations produced by humans and animals and the sounds of man-made objects. Most neuroimaging investigations of environmental sound discrimination have studied subjects while consciously perceiving and often explicitly recognizing the stimuli. Consequently, it remains unclear to what extent auditory object processing occurs independently of task demands and consciousness. Studies in animal models have shown that environmental sound discrimination at a neural level persists even in anesthetized preparations, whereas data from anesthetized humans has thus far provided null results. Here, we studied comatose patients as a model of environmental sound discrimination capacities during unconsciousness. We included 19 comatose patients treated with therapeutic hypothermia (TH) during the first 2 days of coma, while recording nineteen-channel electroencephalography (EEG). At the level of each individual patient, we applied a decoding algorithm to quantify the differential EEG responses to human vs. animal vocalizations as well as to sounds of living vocalizations vs. man-made objects. Discrimination between vocalization types was accurate in 11 patients and discrimination between sounds from living and man-made sources in 10 patients. At the group level, the results were significant only for the comparison between vocalization types. These results lay the groundwork for disentangling truly preferential activations in response to auditory categories, and the contribution of awareness to auditory category discrimination.
Resumo:
In this article, we consider solutions starting close to some linearly stable invariant tori in an analytic Hamiltonian system and we prove results of stability for a super-exponentially long interval of time, under generic conditions. The proof combines classical Birkhoff normal forms and a new method to obtain generic Nekhoroshev estimates developed by the author and L. Niederman in another paper. We will mainly focus on the neighbourhood of elliptic fixed points, the other cases being completely similar.
Resumo:
Pulse wave velocity (PWV) is a surrogate of arterial stiffness and represents a non-invasive marker of cardiovascular risk. The non-invasive measurement of PWV requires tracking the arrival time of pressure pulses recorded in vivo, commonly referred to as pulse arrival time (PAT). In the state of the art, PAT is estimated by identifying a characteristic point of the pressure pulse waveform. This paper demonstrates that for ambulatory scenarios, where signal-to-noise ratios are below 10 dB, the performance in terms of repeatability of PAT measurements through characteristic points identification degrades drastically. Hence, we introduce a novel family of PAT estimators based on the parametric modeling of the anacrotic phase of a pressure pulse. In particular, we propose a parametric PAT estimator (TANH) that depicts high correlation with the Complior(R) characteristic point D1 (CC = 0.99), increases noise robustness and reduces by a five-fold factor the number of heartbeats required to obtain reliable PAT measurements.