995 resultados para river plume
Resumo:
Turbulence and internal waves are probably important in generating layered structures in frontal region of marine environments (e.g. near river plumes outflow into the sea). Here we investigate the role of normal modes of internal waves in generation of layered structure in a part of Persian Gulf where river plume inters and in some laboratory experiments. The model prediction and observations show that layers so formed have a thickness of about 2m based on salinity variations with depth, but layers (about 5m) based on horizontal velocity profiles. Laboratory experiments with a plume outflow in a Filling Box profile also generate normal mode layered structure with 21H=0.5 (where A is layer thickness and H is the plume depth). In these experiments as Re of the flow is smaller than the Re of field flow. The normal modes are substantially dissipated with depth. Typical values of dissipation factor is about 0(100). This factor for field observation is 0(10) which is still substantial. Qualitative comparison between layered structure in field and laboratory is good. It should be emphasized that field observation is for semi-enclosed seas but the laboratory experiments are for enclosed region. Hence some of the discrepancies in the results of two cases are inevitable. Layered structures in marine environments are also produced by double diffusive convection. In this region this should be studied separately.
Resumo:
Dead benthic foraminiferal faunas (> 150 μm) from the Rhône prodelta (Gulf of Lions, NW Mediterranean) were analysed at 41 stations (15–100 m water depth) sampled in June 2005 and September 2006, and compared to the living faunas investigated during previous studies at the same stations. The comparison between dead and living assemblages enhances the understanding of taphonomic processes that may modify the composition of the dead faunas in this area. We observed a loss of individuals from living to dead assemblages of species characterised by a fairly fragile test and therefore more prone to fragmentation or dissolution (e.g., Bolivina alata, Quinqueloculina tenuicollis). Allochthonous dead and/or live specimens may be transported to some parts of the prodelta, particularly the shallowest sites where hydrodynamic processes (i.e., river flood, storm swells, longshore currents) are more intense. These specimens may originate from relict deltaic structures (e.g., Elphidium spp. from the lobe of Bras de Fer) or from surrounding areas (e.g., Ammonia beccarii forma beccarii from the river). Opportunistic species (e.g., Bulimina marginata, Cassidulina carinata) characterised by high reproductive rates have much higher relative abundances in the dead than in the living fauna. Cluster analyses based on dead foraminiferal assemblages divide our study area into four main thanatofacies directly related to distinct local environmental conditions prevailing in the prodelta. Close to the river mouth, Ammonia beccarii forma beccarii and Ammonia tepida are found in sediments subject to a high riverine influence (i.e., bottom currents, high organic and inorganic material input of continental origin). Elphidium species are abundant in the silty-sandy relict deltaic lobe west of the river mouth which is characterised by strong longshore currents that disturb the benthic environment. Nonion fabum, Rectuvigerina phlegeri and Valvulineria bradyana are found along the coast west of the Rhône River mouth, in the area defined as the “river plume” thanatofacies. In the more stable and deeper prodeltaic area, species known to feed on fresh phytodetritus (e.g., Bulimina aculeata/marginata, C. carinata, Hyalinea balthica) dominate the faunas. Since only minor variations in species relative abundances and spatial distributional patterns are observed between the living and the dead faunas, we consider that our thanatofacies have not been influenced by substantial transport of dead tests. This suggests that fossil benthic foraminifera can provide a reliable tool for investigating the development of the palaeo-Rhône prodelta
Resumo:
The influence of Loire and Gironde River discharges over the sea surface temperature (SST) in the eastern Bay of Biscay (0.6º–36.6ºW, 44.2º–47.8ºW) was analyzed by means of two complementary databases (MODIS and OISST1/4). The area influenced by river plume showed a different SST when compared with the adjacent oceanic area for the months when the plume attains its highest extension (December, January, and February). Ocean was observed to warm at a rate of approximately 0.3ºC dec−1 while temperature at the area influenced by the rivers cooled at a rate of −0.15ºC dec−1 over the period 1982–2014. The mere presence of a freshwater layer is able to modulate the warming observed at adjacent ocean locations since the coastal area is isolated from the rest of the Bay. This nearshore strip is the only part of the Bay where changes in SST depend on North Atlantic Oscillation (NAO) but not on North Atlantic SST represented by the Atlantic Multidecadal Oscillation (AMO). These different cooling-warming trends are even more patent over the last years (2002–2014) under atmospheric favorable conditions for plume enhancement. River runoff increased at a rate on the order of 120 m3s−1dec−1 over that period and southwesterly winds, which favor the confinement of the plume, showed a positive and significant trend both in duration and intensity. Thus, the coastal strip has been observed to cool at a rate of −0.5°C dec−1.
Resumo:
In May, June and July 1996, samples wcre collected along one transect greatly influenced by river discharge (eastern side of the gulf), along one transect slightly influence by river discharge (western side), at one station Iocated in the mouth of the main river (River Daugava), at one station located in the center of the Gulf and at several nearshore locations of the western side. Ratios of rnolecular concentrations of in situ dissolved ioorganic nitrogen, phosphorus and silicon, as weIl as enrichment bioassays were llsed to dctcrrnine which nutrient (s) lirnited the potential biomass of phytoplankton. Both comparison of (NO.d-N02+NJ.L): P04 (DIN: DIP) values with Redfic1d's ratio and bioassay inspection led to the sarne conclusions. Phosphorus was clearly the nutrient most limiting for the potcntial biornass of test species in nitrogen- rich waters, which occurred in mid spring, in the upper layer of the southern-eastern part of the Gulf which is greatly influenced by river discharge. In late spring, with the decrease of the total DIN reserve, nitrogen and phosphorus showed an equallimiting role. In deeper layers of this area and out of the river plume (western side and central part of the gulf), nitrogen was the limiting nutrient. In summer, whcn river discharge was the lowest, a11 DIN concentrations but one ranged between 1.6 and 2.6 µM, and the whole area was nitrogen-limited for both the cyanobacterial and the algal test strains. In 74% of the samples for which nitrogen was the limiting nutrient, phosphorus was recorded to be the second potentially limiting nutrient. In contrast, silicon never appeared as limiting the growth potential of either Microcystis aeruginosa or Phaeodactylum tricornutum; phosphorus was the limiting nutrient when DIN: Si03 values were >1 (in May), but DIN: Si03 was <1 when nitrogen was limiting (June and July). The authors conclude that the recently reported decrease of silicon loading in coastal waters and its subsequent enhanced importance in pushing the outcome of species competition towards harmful species may not yet be the most important factor for the Gulf of Riga. Iron appeared for 12% of the tests in the list of nutrients limiting the potential biomass. Tentative results also indicated that a significant fraction of the nitrogen (~,4 µg-atom N 1(-1) taken up by Microcystis aeruginosa may have been in the form of dissolved organic nitrogen (DON). It is thus also suggested tentatively that more attention be paid to these nitrients during further research in the Gulf of Riga.
Resumo:
Field measurements of salinity, wind and river discharge and numerical simulations of hydrodynamics from 1978 to 1984 are used to investigate the dynamics of the buoyant plume off the Pearl River Estuary (PRE), China during summer. The studies have shown that there are four major horizontal buoyant plume types in summer: Offshore Bulge Spreading (Type I), West Alongshore Spreading (Type II), East Offshore Spreading (Type III), and Symmetrical Alongshore Spreading (Type IV). River mouth conditions, winds and ambient coastal currents have inter-influences to the transport processes of the buoyant plume. It is found that all of the four types are surface-advected plumes by analysing the vertical characteristic of the plumes, and the monthly variations of the river discharge affect the plume size dominantly. The correlation coefficient between the PRE plume size and the river discharge reaches 0.85 during the high river discharge season. A wind strength index has been introduced to examine the wind effect. It is confirmed that winds play a significant role in forming the plume morphology. The alongshore wind stress and the coastal currents determine the alongshore plume spreading. The impact of the ambient currents such as Dongsha Current and South China Sea (SCS) Warm Current on the plume off the shelf has also assessed. The present study has demonstrated that both the river discharge and wind conditions affect the plume evolution.
Resumo:
There is excess nitrate (NO3) in the Pearl River coastal plume in the southern waters of Hong Kong in summer. We hypothesize that phosphorus (P) limitation controls the utilization of excess NO3 due to the high N:P ratio in the Pearl River. To test this hypothesis, we conducted two 1-day cruises on July 13 and 19, 2000 to examine the response of the phytoplankton to P additions with respect to changes in biomass, uptake of nutrients and nutrient uptake ratios using a batch incubation of natural water samples collected from the Pearl River estuary and adjacent coastal waters. At a station (E1, salinity =5) in the Pearl River estuary, the N/P ratio at the surface was 46:1, (64 muM DIN: 1.3 muM PO4) and decreased to 24:1 (12 muM DIN: 0.5 muM PO4) downstream at a station (Stn 26, salinity =26) in the coastal plume south of Hong Kong. Without a P addition, NO3 in the water samples collected at E1 could not be depleted during a 9 day incubation (similar to20 muM NO3 remaining). With a P addition, NO3 disappeared completely on day 6 with the depletion of the added PO4 (2-3 muM). This was also true for a station, E4 (salinity= 15) further downstream, but within the estuary. At Stn 26, in the coastal plume south of Hong Kong, NO3 (similar to11.5 muM) was eventually depleted without the addition of PO4, but it took 8 days instead of 5 days for Stn E4. The uptake ratio of dissolved inorganic nitrogen (DIN) to PO4, without a P addition was 51:1, 43:1 and 46:1 for Stns E1, E4 and 26, respectively. With a P addition, the DIN/PO4 uptake ratio decreased to 20:1, 14:1 and 12:1, respectively, for the 3 stations. These results clearly indicate potential P limitation to utilization of NO3 in the Pearl River estuary, resulting in excess NO3 in waters of the coastal plume downstream of the estuary, some of which would eventually be transported offshore. High uptake ratios of N:P without a P addition (43N:1P) suggest that phytoplankton have a nitrogen uptake capacity in excess of the Redfield ratio of 16N: 1P by 2.5-3 times. The value of 2.5-3 times was likely a maximum that should have contained a contribution of P released from desorption of P from sediments or from regeneration by zooplankton grazing and bacterial activity during the incubation of natural water samples. Without a P addition, however, phytoplankton biomass did not increase. This means that P turnover rates or regeneration may allow phytoplankton to take up additional N in excess of the Redfield ratio and store it, but without increasing the algal biomass. Therefore, high ambient N:P ratios in excess of the Redfield ratio do indicate potential P limitation to phytoplankton biomass in this estuarine coastal ecosystem. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
To obtain insight into the natural and/or human-induced changes in the trophic state of the distal portion of the Po River discharge plume over the last two centuries, high temporal resolution dinoflagellate cyst records were established at three sites. Cyst production rates appear to reflect the natural variability in the river's discharge, whereas cyst associations reflect the trophic state of the upper waters, which in turn can be related to agricultural development. The increased abundances of Lingulodinium machaerophorum and Stelladinium stellatum found as early as 1890 and 1920 correspond to the beginning of the industrial revolution in Italy and the first chemical production and dispersion of ammonia throughout Europe. After 1955, the increased abundances of these species and of Polykrikos schwartzii, Brigantedinium spp. and Pentapharsodinium dalei correspond to agriculturally induced alterations of the hypertrophic conditions. A slight improvement in water quality can be observed from 1987 onward.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
The Rio de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28,S) during austral winter and 32 degrees S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Riverine waters bring to seas a variety of suspended materials, which are ultimately deposited on the shelf or exported to the deep ocean. Investigation of the mineralogical contents of these continental-borne constituents on seafloors may reveal valuable information about the environmental conditions in the drainage basin. In this note we report results of X-ray diffraction and other analysis of sediments in bottom samples collected on the continental shelf under influence of the Plata River and the Patos Lagoon, in South America. The analysis reveals that non-clay materials are mostly concentrated south of 33 degrees S, while clay sediments are relatively more abundant further north. We propose that such distributions are controlled by the circulation pattern and water mass distribution of the lower and upper layers, respectively. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We measured the mixing ratios of NO, NO2, O-3, and volatile organic carbon as well as the aerosol light-scattering coefficient on a boat platform cruising on rivers downwind of the city of Manaus (Amazonas State, Brazil) in July 2001 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia-Cooperative LBA Airborne Regional Experiment-2001). The dispersion and impact of the Manaus plume was investigated by a combined analysis of ground-based (boat platform) and airborne trace gas and aerosol measurements as well as by meteorological measurements complemented by dispersion calculations (Hybrid Single-Particle Lagrangian Integrated Trajectory model). For the cases with the least anthropogenic influence (including a location in a so far unexplored region similar to 150 km west of Manaus on the Rio Manacapuru), the aerosol scattering coefficient, sigma(s), was below 11 Mm(-1), NOx mixing ratios remained below 0.6 ppb, daytime O-3 mixing ratios were mostly below 20 ppb and maximal isoprene mixing ratios were about 3 ppb in the afternoon. The photostationary state (PSS) was not established for these cases, as indicated by values of the Leighton ratio, Phi, well above unity. Due to the influence of river breeze systems and other thermally driven mesoscale circulations, a change of the synoptic wind direction from east-northeast to south-southeast in the afternoon often caused a substantial increase of ss and trace gas mixing ratios (about threefold for sigma(s), fivefold for NOx, and twofold for O-3), which was associated with the arrival of the Manaus pollution plume at the boat location. The ratio F reached unity within its uncertainty range at NOx mixing ratios of about 3 ppb, indicating "steady-state" conditions in cases when radiation variations, dry deposition, emissions, and reactions mostly involving peroxy radicals (XO2) played a minor role. The median midday/afternoon XO2 mixing ratios estimated using the PSS method range from 90 to 120 parts per trillion (ppt) for the remote cases (sigma(s) < 11 Mm(-1) and NOx < 0.6 ppb), while for the polluted cases our estimates are 15 to 60 ppt. These values are within the range of XO2 estimated by an atmospheric chemistry box model (Chemistry As A Box model Application-Module Efficiently Calculating the Chemistry of the Atmosphere (CAABA/MECCA)-3.0).
Resumo:
The Princeton Ocean Model is used to study the circulation in the Pear River Estuary (PRE) and the adjacent coastal waters in the winter and summer seasons. Wong et al. [2003] compares the simulation results with the in situ measurements collected during the Pearl River Estuary Pollution Project (PREPP). In this paper, sensitivity experiments are carried out to examine the plume and the associated frontal dynamics in response to seasonal discharges and monsoon winds. During the winter, convergence between the seaward spreading plume water and the saline coastal water sets up a salinity front that aligns from the northeast to the southwest inside the PRE. During the summer the plume water fills the PRE at the surface and spreads eastward in the coastal waters in response to the prevailing southwesterly monsoon. The overall alignment of the plume is from the northwest to the southeast. The subsurface front is similar to that in the winter and summer except that the summer front is closer to the mouth and the winter front closer to the head of the estuary. Inside the PRE, bottom flows are always toward the head of the estuary, attributed to the density gradient associated with the plume front. In contrast, bottom flows in the shelf change from offshore in winter to onshore in summer, reflecting respectively the wintertime downwelling and summertime upwelling. Wind also plays an essential role in controlling the plume at the surface. An easterly wind drives the plume westward regardless winter or summer. The eastward spreading of the plume during the summer can be attributed to the southerly component of the wind. On the other hand, the surface area of the plume is positively proportional to the amount of discharge.
Resumo:
Paleoenvironmental studies based on terrigenous biomarker proxies from sediment cores collected close to the mouth of large river systems rely on a proper understanding of the processes controlling origin, transport and deposition of biomarkers. Here, we contribute to the understanding of these processes by analyzing long-chain n-alkanes from the Amazon River system. We use the dD composition of long-chain n-alkanes from river bed sediments from the Amazon River and its major tributaries, as well as marine core-top samples collected off northeastern South America as tracers for different source areas. The d13C composition of the same compounds is used to differentiate between long-chain n-alkanes from modern forest vegetation and petrogenic organic matter. Our d13C results show depleted d13C values (-33 to -36 per mil) in most samples, indicating a modern forest source for most of the samples. Enriched values (-31 to -33 per mil) are only found in a few samples poor in organic carbon indicating minor contributions from a fossil petrogenic source. Long-chain n-alkane dD analyses show more depleted values for the western tributaries, the Madeira and Solimões Rivers (-152 to -168 per mil), while n-alkanes from the lowland tributaries, the Negro, Xingu and Tocantins Rivers (-142 to -154 per mil), yield more enriched values. The n-alkane dD values thus reflect the mean annual isotopic composition of precipitation, which is most deuterium-depleted in the western Amazon Basin and more enriched in the eastern sector of the basin. Samples from the Amazon estuary show a mixed long-chain n-alkane dD signal from both eastern lowland and western tributaries. Marine core-top samples underlying the Amazon freshwater plume yield dD values similar to those from the Amazon estuary, while core-top samples from outside the plume showed more enriched values. Although the variability in the river bed data precludes quantitative assessment of relative contributions, our results indicate that long-chain n-alkanes from the Amazon estuary and plume represent an integrated signal of different regions of the onshore basin. Our results also imply that n-alkanes are not extensively remineralized during transport and that the signal at the Amazon estuary and plume includes refractory compounds derived from the western sector of the Basin. These findings will aid in the interpretation of plant wax-based records of marine sediment cores collected from the adjacent ocean.
Resumo:
Past river run-off is an important measure for the continental hydrological cycle and the as-sessment of freshwater input into the ocean. However, paleosalinity reconstructions applying different proxies in parallel often show offsets between the respective methods. Here, we compare the established foraminiferal Ba/Ca and d18OWATER salinity proxies for their capability to record the highly seasonal Orinoco freshwater plume in the eastern Caribbean. For this purpose we obtained a data set comprising Ba/Ca and d18OWATER determined on multiple spe-cies of planktonic foraminifera from core tops distributed around the Orinoco river mouth. Our findings indicate that interpretations based on either proxy could lead to different conclu-sions. In particular, Ba/Ca and d18OWATER diverge in their spatial distribution due to different governing factors. Apparently, the Orinoco freshwater plume is best tracked by Ba/Ca ratios of G. ruber (pink and sensu lato morphotypes), while d18OWATER based on the same species is more related to the local precipitation-evaporation balance overprinting the riverine freshwater contribution. Other shallow dwelling species (G. sacculifer, O. universa) show a muted response to the freshwater discharge, most likely due to their ecological and habitat prefer-ences. Extremely high Ba/Ca ratios recorded by G. ruber are attributed to Ba2+-desorption from suspended matter derived from the Orinoco. Samples taken most proximal to the freshwater source do not show pronounced Ba/Ca or d18OWATER anomalies. Here, the suspension loaded freshwater lid developing during maximum discharge suppresses foraminiferal populations. Both proxies are therefore biased towards dry season conditions at these sites, when surface salinity is only minimally reduced.