995 resultados para retention efficiency
Resumo:
Soil-mix technology is effective for the construction of permeable reactive barriers (PRBs) for in situ groundwater treatment. The objective of this study was to perform initial experiments for the design of soil-mix technology PRBs according to (i) sorption isotherm, (ii) reaction kinetics and (iii) mass balance of the contaminants. The four tested reactive systems were: (i) a granular zeolite (clinoptilolite-GZ), (ii) a granular organoclay (GO), (iii) a 1:1-mixture GZ and model sandy clayey soil and (iv) a 1:1:1-mixture of GZ, GO and model soil. The laboratory experiments consisted of batch tests (volume 900mL and sorbent mass 18g) with a multimetal solution of Pb, Cu, Zn, Cd and Ni. For the adsorption experiment, the initial concentrations ranged from 0.01 to 0.5mM (2.5 to 30mg/L). The maximum metal retention was measured in a batch test (300mg/L for each metal, volume 900mL, sorbent mass 90-4.5g). The reactive material efficiency order was found to be GZ>GZ-soil mix>GZ-soil-GO mix>GO. Langmuir isotherms modelled the adsorption, even in presence of a mixed cations solution. Adsorption was energetically favourable and spontaneous in all cases. Metals were removed according to the second order reaction kinetics; GZ and the 1:1-mix were very similar. The maximum retention capacity was 0.1-0.2mmol/g for Pb in the presence of clinoptilolite; for Cu, Zn, Cd and Ni, it was below 0.05mmol/g for the four reactive systems. Mixing granular zeolite, organoclay and model soil increased the chemisorption. Providing that GZ is reactive enough for the specific conditions, GZ can be mixed to obtain the required sorption. Granular clinoptilolite addition to soil is recommended for PRBs for metal contaminated groundwater. The laboratory experiments consisted of batch tests with a multimetal solution of Pb, Cu, Zn, Cd and Ni. The four reactive materials chosen were granular zeolite, clinoptilolite and model sandy clayey soil, granular organoclay and a mix of clinoptilolite, model soil and organoclay. The reactive material efficiency order was found to be granular clinoptilolite>clinoptilolite-soil mix>clinoptilolite-soil-organoclay mix>granular organoclay. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Embryonic stem (ES) cells provide a unique tool for introducing random or targeted genetic alterations, because it is possible that the desired, but extremely rare recombinant genotypes can be screened by drug selection. ES cell-mediated transgenesis has so far been limited to the mouse. In the fish medaka (Oryzias latipes) several ES cell lines have been made available. Here we report the optimized conditions for gene transfer and drug selection in the medaka ES cell line MES1 as a prelude for gene targeting in fish. MES1 cells gave rise to a moderate to high transfection efficiency by the calcium phosphate co-precipitation (5%), commercial reagents Fugene (11%), GeneJuice (21%) and electroporation (>30%). Transient gene transfer and CAT reporter assay revealed that several enhancers/promoters and their combinations including CMV, RSV and ST (the SV40 virus early gene enhancer linked to the thymidine kinase promoter) were suitable regulatory sequences to drive transgene expression in the MES1 cells. We show that neo, hyg or pac conferred resistance to G418, hygromycin or puromycin for positive selection, while the HSV-tk generated sensitivity to ganciclovir for negative selection. The positive-negative selection procedure that is widely used for gene targeting in mouse ES cells was found to be effective also in MES1 cells. Importantly, we demonstrate that MES1 cells after gene transfer and long-term drug selection retained the developmental pluripotency, as they were able to undergo induced differentiation in vitro and to contribute to various tissues and organs during chimeric embryogenesis.
Resumo:
Holm oak (Quercus ilex), a widespread urban street tree in the Mediterranean region, is widely used as biomonitor of persistent atmospheric pollutants, especially particulate-bound metals. By using lab- and field-based experimental approaches, we compared the leaf-level capacity for particles’ capture and retention between Q. ilex and other common Mediterranean urban trees: Quercus cerris, Platanus × hispanica, Tilia cordata and Olea europaea. All applied methods were effective in quantifying particulate capture and retention, although not univocal in ranking species performances. Distinctive morphological features of leaves led to differences in species’ ability to trap and retain particles of different size classes and to accumulate metals after exposure to traffic in an urban street. Overall, P. × hispanica and T. cordata showed the largest capture potential per unit leaf area for most model particles (Na+ and powder particles), and street-level Cu and Pb, while Q. ilex acted intermediately. After wash-off experiments, P. × hispanica leaves had the greatest retention capacity among the tested species and O. europaea the lowest. We concluded that the Platanus planting could be considered in Mediterranean urban environments due to its efficiency in accumulating and retaining airborne particulates; however, with atmospheric pollution being typically higher in winter, the evergreen Q. ilex represents a better year-round choice to mitigate the impact of airborne particulate pollutants.
Resumo:
P>The aim of this research was to study spray drying as potential action to protect chlorophyllide from environmental conditions for shelf-life extension and characterisation of the powders. Six formulations were prepared with 7.5 and 10 g of carrier agents [gum Arabic (GA), maltodextrin (MA) and soybean protein isolate (SPI)]/100 mL of chlorophyllide solutions. The powders were evaluated for morphological characteristics (SEM), particle size, water activity, moisture, density, hygroscopicity, cold water solubility, sorption isotherms, colour and stability, during 90 days. All the powders were highly soluble, with solubility values around 97%. A significant lower hygroscopicity was observed for GA powders, whilst the lower X(m) values obtained by GAB equation fitting of the sorption isotherms was observed for the 7.5 g MA/100 mL samples. All formulations, but the 1 (7.5 g SPI/100 mL of chlorophyllide), provided excellent stability to the chlorophyllide during 90 days of storage even at room temperature.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: Surgical reconstruction and prosthetic obturation are alternatives for the treatment of cleft in the soft palate.Design: The present case reports the rehabilitation of a patient presenting cleft palate with obturator prosthesis associated with implant-supported retention system.Conclusions: The use of ball attachment system improved speech, masticatory efficiency, swallowing, and social behavior of the patient.
Resumo:
Objetivou-se neste trabalho avaliar o controle em pré-emergência de Ipomoea hederifolia e Ipomoea quamoclit pelo herbicida sulfentrazone em função do intervalo de tempo entre a aplicação e a ocorrência de chuva e da manutenção ou não de palha de cana-de-açúcar na superfície do solo. Três experimentos foram desenvolvidos: dois em casa de vegetação e um em campo. Nos experimentos em casa de vegetação, foram estudadas três doses de sulfentrazone (0, 0,6 e 0,9 kg ha-1) pulverizado em duas quantidades de palha na superfície do solo (0 e 10 t ha-1) e cinco intervalos de tempo entre a sua aplicação e a simulação de chuva (0, 20, 40, 60 e 90 dias). No experimento em campo, foram avaliados cinco tratamentos de herbicida (sulfentrazone a 0,6 e 0,9 kg ha-1; sulfentrazone + hexazinone a 0,6 + 0,25 kg ha-1; amicarbazone a 1,4 kg ha-1; e imazapic a 0,147 kg ha-1) e duas testemunhas sem aplicação. A manutenção ou não da palha de cana sobre o solo também foi estudada. em casa de vegetação, a aplicação de 0,6 kg ha-1 de sulfentrazone foi suficiente para o controle adequado de I. hederifolia e I. quamoclit num ambiente seco com até 90 dias sem chuva após a aplicação. Os 20 mm de chuva simulados após a aplicação do herbicida foram suficientes para remover o sulfentrazone da palha para o solo, pois o efeito biológico de controle de I. hederifolia e I. quamoclit não foi alterado. em campo, sem ou com a permanência de palha de cana sobre o solo, o sulfentrazone isolado (0,6 e 0,9 kg ha-1) ou em mistura com hexazinone (0,6 + 0,25 kg ha-1) foi eficaz para I. hederifolia e I. quamoclit, com resposta similar ou melhor que a do amicarbazone (1,4 kg ha-1) e imazapic (0,147 kg ha-1).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: To evaluate the masticatory efficiency of patients rehabilitated with conventional dentures (CDs) or implant-retained mandibular overdentures. Background: Despite the evident benefits of implants on mastication as assessed by subjective patient-based outcomes, the extent of implant overdenture treatment effect on food comminution is not well established. Materials and methods: A randomised clinical trial was carried out with 29 completely edentulous patients divided into two groups. The first group was rehabilitated with a mandibular overdenture retained by two splinted implants with bar-clip system, while the second group was rehabilitated with a mandibular CD. Both groups also were rehabilitated with maxillary CDs. Masticatory efficiency and patient satisfaction were assessed 3 months after denture insertion. Masticatory efficiency was evaluated through the colorimetric method with the beads as the artificial test-food. Comparisons for masticatory efficiency and patient satisfaction were performed using Student's t-test (alpha = 0.05). Results: No significant statistical difference was found for masticatory efficiency (p = 0.198). Patient overall satisfaction was significantly higher for the mandibular overdenture (p < 0.001). In addition, mandibular overdenture patients were significantly more satisfied with chewing experience (p < 0.05) and retention of the lower denture (p < 0.005). Conclusion: The results of this study suggest that mandibular overdenture significantly improves chewing experience, although limited effect on masticatory efficiency has been observed.
Resumo:
Microalgae are sun - light cell factories that convert carbon dioxide to biofuels, foods, feeds, and other bioproducts. The concept of microalgae cultivation as an integrated system in wastewater treatment has optimized the potential of the microalgae - based biofuel production. These microorganisms contains lipids, polysaccharides, proteins, pigments and other cell compounds, and their biomass can provide different kinds of biofuels such as biodiesel, biomethane and ethanol. The algal biomass application strongly depends on the cell composition and the production of biofuels appears to be economically convenient only in conjunction with wastewater treatment. The aim of this research thesis was to investigate a biological wastewater system on a laboratory scale growing a newly isolated freshwater microalgae, Desmodesmus communis, in effluents generated by a local wastewater reclamation facility in Cesena (Emilia Romagna, Italy) in batch and semi - continuous cultures. This work showed the potential utilization of this microorganism in an algae - based wastewater treatment; Desmodesmus communis had a great capacity to grow in the wastewater, competing with other microorganisms naturally present and adapting to various environmental conditions such as different irradiance levels and nutrient concentrations. The nutrient removal efficiency was characterized at different hydraulic retention times as well as the algal growth rate and biomass composition in terms of proteins, polysaccharides, total lipids and total fatty acids (TFAs) which are considered the substrate for biodiesel production. The biochemical analyses were coupled with the biomass elemental analysis which specified the amount of carbon and nitrogen in the algal biomass. Furthermore photosynthetic investigations were carried out to better correlate the environmental conditions with the physiology responses of the cells and consequently get more information to optimize the growth rate and the increase of TFAs and C/N ratio, cellular compounds and biomass parameter which are fundamental in the biomass energy recovery.
Resumo:
Enzymatic transformations of macromolecular substrates such as DNA repair enzyme/DNA transformations are commonly interpreted primarily by active-site functional-group chemistry that ignores their extensive interfaces. Yet human uracil–DNA glycosylase (UDG), an archetypical enzyme that initiates DNA base-excision repair, efficiently excises the damaged base uracil resulting from cytosine deamination even when active-site functional groups are deleted by mutagenesis. The 1.8-Å resolution substrate analogue and 2.0-Å resolution cleaved product cocrystal structures of UDG bound to double-stranded DNA suggest enzyme–DNA substrate-binding energy from the macromolecular interface is funneled into catalytic power at the active site. The architecturally stabilized closing of UDG enforces distortions of the uracil and deoxyribose in the flipped-out nucleotide substrate that are relieved by glycosylic bond cleavage in the product complex. This experimentally defined substrate stereochemistry implies the enzyme alters the orientation of three orthogonal electron orbitals to favor electron transpositions for glycosylic bond cleavage. By revealing the coupling of this anomeric effect to a delocalization of the glycosylic bond electrons into the uracil aromatic system, this structurally implicated mechanism resolves apparent paradoxes concerning the transpositions of electrons among orthogonal orbitals and the retention of catalytic efficiency despite mutational removal of active-site functional groups. These UDG/DNA structures and their implied dissociative excision chemistry suggest biology favors a chemistry for base-excision repair initiation that optimizes pathway coordination by product binding to avoid the release of cytotoxic and mutagenic intermediates. Similar excision chemistry may apply to other biological reaction pathways requiring the coordination of complex multistep chemical transformations.
Resumo:
in two feeding experiments male and mixed-sex broiler chicks were offered diets based on sorghum and a wheat-sorghum blend with two tiers of nutrient specifications, without and with microbial phytase (600 and 800 FTU/kg), from 7-25 and 1-42 days post-hatch, respectively. The nutrient specifications for protein, amino acids, energy density and phosphorus (P) of standard diets were reduced to formulate the modified diets on a least-cost basis. Calculated differences in nutrient specifications between standard and modified diets ranged from 14.3 to 17.1 g/kg crude protein, 0.24 to 0.40 MJ/kg apparent metabolisable energy (AME) and 1.06 to 1.20 g/kg available P. In both experiments, reduced nutrient specifications had a negative impact on growth rates and feed efficiency and phytase supplementation had a positive influence on growth performance and protein efficiency ratios (PER). Phytase addition to the less expensive, modified diets either partially or entirely compensated for reduced growth performance and, consequently, feed costs per kg of live weight gain were reduced. In Experiment 1, phytase increased (p<0.001) nitrogen-corrected AME (AMEn) from 15.39 to 15.89 MJ/kg dry matter. For nitrogen (N) retention there was an interaction (p<0.05) between diet type and phytase as the effects of phytase on N retention were more pronounced in the modified diets, with an increase from 0.512 to 0.561. These results demonstrate the positive effects of phytase on protein and energy utilisation, in addition to its established liberation of phytate-bound P and illustrate the feasibility of assigning nutrient replacement values to the feed enzyme for consideration in least-cost ration formulations. Further work is, however, required to define the most appropriate reductions in nutrient specifications in association with phytase supplementation.
Resumo:
Objective Patients can experience urinary retention (UR) after Holmium laser enucleation of the prostate (HoLEP) that requires bladder distension during the procedure. The aim of this retrospective study is to identify factors affecting the UR after HoLEP. Materials and Methods 336 patients, which underwent HoLEP for a symptomatic benign prostatic hyperplasia between July 2008 and March 2012, were included in this study. Urethral catheters were routinely removed one or two days after surgery. UR was defined as the need for an indwelling catheter placement following a failure to void after catheter removal. Demographic and clinical parameters were compared between the UR (n = 37) and the non-urinary retention (non-UR; n = 299) groups. Results The mean age of patients was 68.3 (±6.5) years and the mean operative time was 75.3 (±37.4) min. Thirty seven patients (11.0%) experienced a postoperative UR. UR patients voided catheter free an average of 1.9 (±1.7) days after UR. With regard to the causes of UR, 24 (7.1%) and 13 (3.9%) patients experienced a blood clot-related UR and a non-clot related UR respectively. Using multivariate analysis (p<0.05), we found significant differences between the UR and the non-UR groups with regard to a morcellation efficiency (OR 0.701, 95% CI 0.498–0.988) and a bleeding-related complication, such as, a reoperation for bleeding (OR 0.039, 95% CI 0.004–0.383) or a transfusion (OR 0.144, 95% CI 0.027–0.877). Age, history of diabetes, prostate volume, pre-operative post-void residual, bladder contractility index, learning curve, and operative time were not significantly associated with the UR (p>0.05). Conclusions De novo UR after HoLEP was found to be self-limited and it was not related to learning curve, patient age, diabetes, or operative time. Efficient morcellation and careful control of bleeding, which reduces clot formation, decrease the risk of UR after HoLEP.