985 resultados para restraint stress


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Adolescence has been proposed as an ontogenic period of vulnerability to stress. Nevertheless, the impact of stressful events during adolescence in cardiovascular activity is poorly understood. Therefore, the purpose of this study was to investigate the immediate and long-lasting effects of exposure to stressful events during adolescence in cardiovascular function of rats. To this end, we compared the impact of 10-days exposure to two chronic stress protocols: the repeated restraint stress (RRS, homotypic) and chronic variable stress (CVS, heterotypic). Independent groups of animals were tested 24 h (immediate) or three weeks (long-lasting) following completion of stress period. Exposure to CVS, but not RRS, during adolescence increased basal HR values without affecting arterial pressure, which was followed by augmented power of oscillatory component at low frequency (sympathetic-related) of the pulse interval (PI). RRS enhanced variance of the PI with an increase in the power of both low and high (parasympathetic-related) frequency components. RRS also increased the baroreflex gain. Neither RRS nor CVS affected systolic arterial pressure variability. The RRS-evoked changes in PI variability were long-lasting and persisted into adulthood while all alterations evoked by the CVS were reversed in adulthood. These findings indicate a stress type-specific influence in immediate and long-term effects of stress during adolescence in cardiovascular function. While immediate changes in cardiovascular function were mainly observed following CVS, long-lasting autonomic consequences in adulthood were observed only in animals exposed to RRS during adolescence.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: This study investigated the physiological and somatic changes evoked by daily exposure to the same type of stressor (homotypic) or different aversive stressor stimuli (heterotypic) in adolescent and adult rats, with a focus on cardiovascular function. The long-term effects of stress exposure during adolescence were also investigated longitudinally. Methods: Male Wistar rats were exposed to repeated restraint stress (RRS, homotypic) or chronic variable stress (CVS, heterotypic). Results: Adrenal hypertrophy, thymus involution, and elevated plasma glucocorticoid were observed only in adolescent animals, whereas reduction in body weight was caused by both stress regimens in adults. CVS increased mean arterial pressure (adolescent: p = .001; adult: p = .005) and heart rate (HR; adolescent: p = .020; adult: p = .011) regardless of the age, whereas RRS increased blood pressure selectively in adults (p = .001). Rest tachycardia evoked by CVS was associated with increased cardiac sympathetic activity in adults, whereas a decreased cardiac parasympathetic activity was observed in adolescent animals. Changes in cardiovascular function and cardiac autonomic activity evoked by both CVS and RRS were followed by alterations in baroreflex activity and vascular reactivity to vasoconstrictor and vasodilator agents in adolescent adult animals. Except for the circulating glucocorticoid change, all alterations observed during adolescence were reversed in adulthood. Conclusions: These findings suggest a stress vulnerability of adolescents to somatic and neuroendocrine effects regardless of stress regimen. Our results indicated an age-stress type-specific influence in stress-evoked cardiovascular/autonomic changes. Data suggest minimal consequences in adulthood of stress during adolescence.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fluoxetine (FLX) is commonly used to treat anxiety and depressive disorders in pregnant women. Since FLX crosses the placenta and is excreted in milk, maternal treatment with this antidepressant may expose the fetus and neonate to increased levels of serotonin (5-HT). Long-term behavioral abnormalities have been reported in rodents exposed to higher levels of 5-HT during neurodevelopment. In this study we evaluated if maternal exposure to FLX during pregnancy and lactation would result in behavioral and/or stress response disruption in adolescent and adult rats. Our results indicate that exposure to FLX influenced restraint stress-induced Fos expression in the amygdala in a gender and age-specific manner. In male animals, a decreased expression was observed in the basolateral amygdala at adolescence and adulthood; whereas at adulthood, a decrease was also observed in the medial amygdala. A lack of FLX exposure effect was observed in females and also in the paraventricular nucleus of both genders. Regarding the behavioral evaluation, FLX exposure did not induce anhedonia in the sucrose preference test but decreased the latency to feed of both male and female adolescent rats evaluated in the novelty-suppressed feeding test. In conclusion, FLX exposure during pregnancy and lactation decreases acute amygdalar stress response to a psychological stressor in males (adolescents and adults) as well as influences the behavior of adolescents (males and females) in a model that evaluates anxiety and/or depressive-like behavior. Even though FLX seems to be a developmental neurotoxicant, the translation of these findings to human safe assessment remains to be determined since it is recognized that not treating a pregnant or lactating woman may also impact negatively the development of the descendants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background/Aims: Early life experiences are homeostatic determinants for adult organisms. We evaluated the impact of prenatal immune activation during late gestation on the neuroimmune-endocrine function of adult offspring and its interaction with acute stress. Methods: Pregnant Swiss mice received saline or lipopolysaccharide (LPS) on gestational day 17. Adult male offspring were assigned to the control or restraint stress condition. We analyzed plasmatic corticosterone and catecholamine levels, the monoamine content in the hypothalamus, striatum and frontal cortex, and the sleep-wake cycle before and after acute restraint stress. Results and Conclusion: Offspring from LPS-treated dams had increased baseline norepinephrine levels and potentiated corticosterone secretion after the acute stressor, and no effect was observed on hypothalamic monoamine content or sleep behavior. The offspring of immune-activated dams exhibited impairments in stress-induced serotonergic and dopaminergic alterations in the striatum and frontal cortex. The data demonstrate a distinction between the plasmatic levels of corticosterone in response to acute stress and the hypothalamic monoamine content and sleep patterns. We provide new evidence regarding the influence of immune activation during late gestation on the neuroendocrine homeostasis of offspring.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Activation of the sympathetic nervous system (SNS) in response to chronic biobehavioral stress results in high levels of catecholamines and persistent activation of adrenergic signaling, which promotes tumor growth and progression. However it is unknown how catecholamine levels within the tumor exceed systemic levels in circulation. I hypothesized that neo-innervation of tumors is required for stress-mediated effects on tumor growth. Results: First, I examined whether sympathetic nerves are present in human ovarian cancer samples as well as orthotopic ovarian cancer models. Immunohistochemical (IHC) staining for neurofilament revealed that catecholaminergic neurons are present within tumor tissue. In order to determine whether chronic stress affects the density of nerves in the tumor, I utilized an orthotopic mouse model of ovarian cancer that was exposed to daily restraint stress. IHC analysis revealed that nerve density in tumors increased by more than three-fold in stressed animals versus non-stressed controls. IHC analysis suggested that this results from both recruitment of existing neurons (axonogenesis) as well as new neuron formation (neurogenesis) within the tumor. To determine how tumors are recruiting nerve growth, I utilized a PCR array analysis of 84 nerve growth related genes and their receptors, which showed that stimulation of the SKOV3 ovarian cancer cell line with norepinephrine (NE) leads to increased expression of several neurotrophins, including brain-derived neurotrophic factor (BDNF). Neurite extension assays showed that media conditioned by ovarian cancer cell lines is capable of inducing neurite outgrowth in differentiated neuron-like PC12 cells, and NE treatment of cancer cells potentiates this effect. Norepinephrine-induced neurite extension was abolished after BDNF silencing by siRNA, suggesting that BDNF is critical to tumor cell-induced nerve growth. in vivo BDNF inhibition resulted in complete abrogation of stress-induced increases in tumor weight and nerve density, as well as downstream markers of stress. Discussion: These studies indicate that adrenergic signalling induced by chronic stress promotes neo-innervation in the tumor microenvironment. This results in a mutually beneficial relationship between the tumor cells and neurons. This work is crucial for providing a link between chronic stress and its effects on the tumor and its microenvironment. The data shown here aims to open new venues that can be used in development of therapies designed to block the stress effects on tumor growth.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Psychological stress is thought to contribute to reactivation of latent herpes simplex virus (HSV). Although several animal models have been developed in an effort to reproduce different pathogenic aspects of HSV keratitis or labialis, until now, no good animal model existed in which application of a psychological laboratory stressor results in reliable reactivation of the virus. Reported herein, disruption of the social hierarchy within colonies of mice increased aggression among cohorts, activated the hypothalamic-pituitary-adrenal axis, and caused reactivation of latent HSV type 1 in greater than 40% of latently infected animals. However, activation of the hypothalamic-pituitary-adrenal axis using restraint stress did not activate the latent virus. Thus, the use of social stress in mice provides a good model in which to investigate the neuroendocrine mechanisms that underlie behaviorally mediated reactivation of latent herpesviruses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Clinical findings suggest that inflammatory disease symptoms are aggravated by ongoing, repeated stress, but not by acute stress. We hypothesized that, compared with single acute stressors, chronic repeated stress may engage different physiological mechanisms that exert qualitatively different effects on the inflammatory response. Because inhibition of plasma extravasation, a critical component of the inflammatory response, has been associated with increased disease severity in experimental arthritis, we tested for a potential repeated stress-induced inhibition of plasma extravasation. Repeated, but not single, exposures to restraint stress produced a profound inhibition of bradykinin-induced synovial plasma extravasation in the rat. Experiments examining the mechanism of inhibition showed that the effect of repeated stress was blocked by adrenalectomy, but not by adrenal medullae denervation, suggesting that the adrenal cortex mediates this effect. Consistent with known effects of stress and with mediation by the adrenal cortex, restraint stress evoked repeated transient elevations of plasma corticosterone levels. This elevated corticosterone was necessary and sufficient to produce inhibition of plasma extravasation because the stress-induced inhibition was blocked by preventing corticosterone synthesis and, conversely, induction of repeated transient elevations in plasma corticosterone levels mimicked the effects of repeated stress. These data suggest that repetition of a mild stressor can induce changes in the physiological state of the animal that enable a previously innocuous stressor to inhibit the inflammatory response. These findings provide a potential explanation for the clinical association between repeated stress and aggravation of inflammatory disease symptoms and provide a model for study of the biological mechanisms underlying the stress-induced aggravation of chronic inflammatory diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report that 9 d of uncontrolled experimental diabetes induced by streptozotocin (STZ) in rats is an endogenous chronic stressor that produces retraction and simplification of apical dendrites of hippocampal CA3 pyramidal neurons, an effect also observed in nondiabetic rats after 21 d of repeated restraint stress or chronic corticosterone (Cort) treatment. Diabetes also induces morphological changes in the presynaptic mossy fiber terminals (MFT) that form excitatory synaptic contacts with the proximal CA3 apical dendrites. One effect, synaptic vesicle depletion, occurs in diabetes as well as after repeated stress and Cort treatment. However, diabetes produced other MFT structural changes that differ qualitatively and quantitatively from other treatments. Furthermore, whereas 7 d of repeated stress was insufficient to produce dendritic or synaptic remodeling in nondiabetic rats, it potentiated both dendritic atrophy and MFT synaptic vesicle depletion in STZ rats. These changes occurred in concert with adrenal hypertrophy and elevated basal Cort release as well as hypersensitivity and defective shutoff of Cort secretion after stress. Thus, as an endogenous stressor, STZ diabetes not only accelerates the effects of exogenous stress to alter hippocampal morphology; it also produces structural changes that overlap only partially with those produced by stress and Cort in the nondiabetic state.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Repeated psychosocial or restraint stress causes atrophy of apical dendrites in CA3 pyramidal neurons of the hippocampus, accompanied by specific cognitive deficits in spatial learning and memory. Excitatory amino acids mediate this atrophy together with adrenal steroids and the neurotransmitter serotonin. Because the mossy fibers from dentate granule neurons provide a major excitatory input to the CA3 proximal apical dendrites, we measured ultrastructural parameters associated with the mossy fiber–CA3 synapses in control and 21-day restraint-stressed rats in an effort to find additional morphological consequences of stress that could help elucidate the underlying anatomical as well as cellular and molecular mechanisms. Although mossy fiber terminals of control rats were packed with small, clear synaptic vesicles, terminals from stressed animals showed a marked rearrangement of vesicles, with more densely packed clusters localized in the vicinity of active zones. Moreover, compared with controls, restraint stress increased the area of the mossy fiber terminal occupied by mitochondrial profiles and consequently, a larger, localized energy-generating capacity. A single stress session did not produce these changes either immediately after or the next day following the restraint session. These findings provide a morphological marker of the effects of chronic stress on the hippocampus that points to possible underlying neuroanatomical as well as cellular and molecular mechanisms for the ability of repeated stress to cause structural changes within the hippocampus.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transient prenatal vitamin D deficiency produces hyperlocomotion in the adult rat. The aim of this study was to examine the effects of acute restraint on the behaviour of DVD and control rats in the open field. Rats were conceived and born to developmentally vitamin D (DVD) deficient or replete (control) dams and, at 8 weeks of age, were monitored for 30 min in an open field using automated video tracking software. Half of the rats were restrained within a towel for 5 min immediately before the open field test. The remainder received minimal handling prior to the open field test. Repeating previous findings, DVD deficient animals had enhanced locomotion during the first 10 min of the open field test compared to control rats. By contrast, there were no differences in locomotor activity after acute restraint stress. The time rats spent in the corners and side of the open field was affected by prenatal diet. DVD rats spent less time in the corners and more time in the side than control rats across the whole 30 min test. This difference was not seen in rats with acute restraint stress. The time spent in the centre was not altered by prenatal diet or acute restraint. Thus, transient prenatal vitamin D deficiency induces a transient spontaneous hyperlocomotion in adulthood that is modulated by acute restraint stress. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mechanisms governing fetal development follow a tightly regulated pattern of progression such that interference at any one particular stage is likely to have consequences for all other stages of development in the physiological system that has been affected thereafter. These disturbances can take the form of many different events but two of the most common and widely implicated in causing detrimental effects to the developing fetus are maternal immune activation (MIA) and maternal stress. MIA has been shown to cause an increase in circulating proinflammatory cytokines in both the maternal and fetal circulation. This increase in proinflammatory mediators in the fetus is thought to occur by fetal production rather than through exchange between the maternal-fetal interface. In the case of maternal stress it is increased levels of stress related hormones such as cortisol/corticosterone which is thought to elicit the detrimental effects on fetal development. In the case of both maternal infection and stress the timing and nature of the insult generally dictates the severity and type of effects seen in affected offspring. We investigated the effect of a proinflammatory environment on neural precursor cells of which exposure resulted in a significant decrease in the normal rate of proliferation of NPCs in culture but did not have any effect on cell survival. These effects were seen to be age dependent. Using a restraint stress model we investigated the effects of prenatal stress on the development of a number of different physiological systems in the same cohort of animals. PNS animals exhibited a number of aberrant changes in cardiovascular function with altered responses to stress and hypertension, modifications in respiratory responses to hypercapnic and hypoxic challenges and discrepancies in gastrointestinal innervation. Taken together these findings suggest that both maternal infection and maternal stress are detrimental to the normal development of the fetus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ventral medial prefrontal cortex (vMPFC) has direct connections to subcortical, diencephalic and brainstem structures that have been closely related to depression. However, studies aimed at investigating the role of the vMPFC in the neurobiology of depression have produced contradictory results. Moreover, the precise involvement of vMPFC anatomic subdivisions, the prelimbic(PL) and the infralimbic (IL) cortices, in regulating depressive-like behavior have been poorly investigated. The forced swimming test (FST) is a widely employed animal model aimed at detecting antidepressant-like effects. Therefore, to further investigate a possible involvement of the vMFPC in depressive-like behavior, rats bilaterally implanted with cannulae aimed at the PL or IL prefrontal cortices were submitted to 15 min of forced swimming (pre-test) followed, 24 h later, by a 5-min swimming session (test), where immobility time was registered. Synaptic transmission in these regions was temporarily inhibited using local microinjection of cobalt chloride at different periods of the experimental procedure (before or after the pre-test or before the test). PL inactivation decreased immobility time independently of the time of the injection. In the IL inactivation induced a significant antidepressant-like effect when performed immediately before the pre-test or before the test, but not after the pre-test. These results suggest that activation of the vMPFC is important for the behavioral changes observed in rats submitted to the FST. They further indicate that, although both the PL and IL cortices are involved in these effects, they may play different roles. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cannabidiol (CBD) is a non-psychotomimetic constituent of the Cannabis sativa plant that inhibits behavioral and cardiovascular responses to aversive situations. facilitating 5-HT(1A)-mediated neurotransmission. Previous results from our group suggest that the bed nucleus of the stria terminalis (BNST) may be involved in CBD`s anti-aversive effects. To investigate whether the cardiovascular effects of the CBD could involve a direct drug effect on the BNST, we evaluated the effects of CBD microinjection into this structure on baroreflex activity. We also verified whether these effects were mediated by the activation of 5-HT(1A) receptors. Bilateral microinjection of CBD (60 nmol/100 nL) into the BNST increased the bradycardiac response to arterial pressure increases. However, no changes were observed in tachycardiac responses evoked by arterial pressure decreases. Pretreatment of the BNST with the selective 5-HT(1A) receptor antagonist WAY100635 (0.37 nmol/100 nL) prevented CBD effects on the baroreflex activity. Moreover, microinjection of the 5-HT(1A) receptor agonist 8-OH-DPAT (4 nmol/100 nL) caused effects that were similar to those observed after the microinjection of CBD, which were also blocked by pretreatment with WAY100635. In conclusion, the present studies show that the microinjection of CBD into the BNST has a facilitatory influence on the baroreflex response to blood pressure increases, acting through the activation of 5-HT(1A) receptors. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, we investigated the role played by the hypothalamic paraventricular nucleus (PVN) in the modulation of cardiac baroreflex activity in unanesthetized rats. Bilateral microinjections of the nonselective neurotransmission blocker CoCl(2) into the PVN decreased the reflex bradycardic response evoked by blood pressure increases, but had no effect on reflex tachycardia evoked by blood pressure decreases. Bilateral microinjections of the selective NMDA glutamate receptor antagonist LY235959 into the PVN caused effects that were similar to those observed after microinjections of CoCl(2), decreasing reflex bradycardia without affecting tachycardic response. The microinjection of the selective non-NMDA glutamate receptor antagonist NBQX into the PVN did not affect the baroreflex activity. Also, the microinjection of L-glutamate into the PVN increased the reflex bradycardia, an effect opposed to that observed after PVN treatment with CoCl(2) or LY235959, and this effect of L-glutamate was blocked by PVN pretreatment with LY235959. LY235959 injected into the PVN after iv. treatment with the selective beta(1)-adrenoceptor antagonist atenolol still decreased the reflex bradycardia. Taken together, our results suggest a facilitatory influence of the PVN on the bradycardic response of the baroreflex through activation of local NMDA glutamate receptors and a modulation of the cardiac parasympathetic activity. (C) 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.