986 resultados para respiratory burst activity


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Biociências e Biotecnologia Aplicadas à Farmácia - FCFAR

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Aquicultura - FCAV

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Las NADPH oxidasas de plantas, denominadas “respiratory burst oxidase homologues” (RBOHs), producen especies reactivas del oxígeno (ROS) que median un amplio rango de funciones. En la célula vegetal, el ajuste preciso de la producción de ROS aporta la especificidad de señal para generar una respuesta apropiada ante las amenazas ambientales. RbohD y RbohF, dos de los diez genes Rboh de Arabidopsis, son pleiotrópicos y median diversos procesos fisiológicos en respuesta a patógenos. El control espacio-temporal de la expresión de los genes RbohD y RbohF podría ser un aspecto crítico para determinar la multiplicidad de funciones de estas oxidasas. Por ello, generamos líneas transgénicas de Arabidopsis con fusiones de los promoters de RbohD y RbohF a los genes delatores de la B-glucuronidasa y la luciferasa. Estas líneas fueron empleadas para revelar el patrón de expresión diferencial de RbohD y RbohF durante la respuesta inmune de Arabidopsis a la bacteria patógena Pseudomonas syringae pv. tomato DC3000, el hongo necrótrofo Plectosphaerella cucumerina y en respuesta a señales relacionadas con la respuesta inmune. Nuestros experimentos revelan un patrón de expresión diferencial de los promotores de RbohD y RbohF durante el desarrollo de la planta y en la respuesta inmune de Arabidopsis. Además hemos puesto de manifiesto que existe una correlación entre el nivel de actividad de los promotores de RbohD y RbohF con la acumulación de ROS y el nivel de muerte celular en respuesta a patógenos. La expression de RbohD y RbohF también es modulada de manera diferencial en respuesta a patrones moleculares asociados a patógenos (PAMPs) y por ácido abscísico (ABA). Cabe destacar que, mediante una estrategia de intercambio de promotores, hemos revelado que la región promotora de RbohD, es necesaria para dirigir la producción de ROS en respuesta a P. cucumerina. Adicionalmente, la activación del promotor de RbohD en respuesta al aislado de P. cucumerina no adaptado a Arabidopsis 2127, nos llevó a realizar ensayos de susceptibilidad con el doble mutante rbohD rbohF que han revelado un papel desconocido de estas oxidasas en resistencia no-huesped. La interacción entre la señalización dependiente de las RBOHs y otros componentes de la respuesta inmune de plantas podría explicar también las distintas funciones que median estas oxidasas en relación con la respuesta inmune. Entre la gran cantidad de señales coordinadas con la actividad de las RBOHs, existen evidencias genéticas y farmacológicas que indican que las proteínas G heterotriméricas están implicadas en algunas de las rutas de señalización mediadas por ROS derivadas de los RBOHs en respuesta a señales ambientales. Por ello hemos estudiado la relación entre estas RBOH-NADPH oxidasas y AGB1, la subunidad β de las proteínas G heterotriméricas en la respuesta inmune de Arabidopsis. Análisis de epistasis indican que las proteínas G heterotriméricas están implicadas en distintas rutas de señalización en defensa mediadas por las RBOHs. Nuestros resultados ilustran la relación compleja entre la señalización mediada por las RBOHs y las proteínas G heterotriméricas, que varía en función de la interacción planta-patógeno analizada. Además, hemos explorado la posible asociación entre AGB1 con RBOHD y RBOHF en eventos tempranos de la respuesta immune. Cabe señalar que experimentos de coímmunoprecipitación apuntan a una posible asociación entre AGB1 y la kinasa citoplasmática reguladora de RBOHD, BIK1. Esto indica un posible mecanismo de control de la función de esta NADPH oxidase por AGB1. En conjunto, estos datos aportan nuevas perspectivas sobre cómo, a través del control transcripcional o mediante la interacción con las proteínas G heterotriméricas, las NADPH oxidases de plantas median la producción de ROS y la señalización por ROS en la respuesta inmune. Nuestro trabajo ejemplifica cómo la regulación diferencial de dos miembros de una familia multigénica, les permite realizar distintas funciones fisiológicas especializadas usando un mismo mecanismo enzimático. ABSTRACT The plant NADPH oxidases, termed respiratory burst oxidase homologues (RBOHs), produce reactive oxygen species (ROS) which mediate a wide range of functions. Fine tuning this ROS production provides the signaling specificity to the plant cell to produce the appropriate response to environmental threats. RbohD and RbohF, two of the ten Rboh genes present in Arabidopsis, are pleiotropic and mediate diverse physiological processes in response to pathogens. One aspect that may prove critical to determine the multiplicity of functions of RbohD and RbohF is the spatio-temporal control of their gene expression. Thus, we generated Arabidopsis transgenic lines with RbohD- and RbohF-promoter fusions to the β-glucuronidase and the luciferase reporter genes. These transgenics were employed to reveal RbohD and RbohF promoter activity during Arabidopsis immune response to the pathogenic bacterium Pseudomonas syringae pv tomato DC3000, the necrotrophic fungus Plectosphaerella cucumerina and in response to immunity-related cues. Our experiments revealed a differential expression pattern of RbohD and RbohF throughout plant development and during Arabidopsis immune response. Moreover, we observed a correlation between the level of RbohD and RbohF promoter activity, the accumulation of ROS and the amount of cell death in response to pathogens. RbohD and RbohF gene expression was also differentially modulated by pathogen associated molecular patterns and abscisic acid. Interestingly, a promoter-swap strategy revealed the requirement for the promoter region of RbohD to drive the production of ROS in response to P. cucumerina. Additionally, since the RbohD promoter was activated during Arabidopsis interaction with a non-adapted P. cucumerina isolate 2127, we performed susceptibility tests to this fungal isolate that uncovered a new role of these oxidases on non-host resistance. The interplay between RBOH-dependent signaling with other components of the plant immune response might also explain the different immunity-related functions mediated by these oxidases. Among the plethora of signals coordinated with RBOH activity, pharmacological and genetic evidence indicates that heterotrimeric G proteins are involved in some of the signaling pathways mediated by RBOH–derived ROS in response to environmental cues. Therefore, we analysed the interplay between these RBOH-NADPH oxidases and AGB1, the Arabidopsis β-subunit of heterotrimeric G proteins during Arabidopsis immune response. We carried out epistasis studies that allowed us to test the implication of AGB1 in different RBOH-mediated defense signaling pathways. Our results illustrate the complex relationship between RBOH and heterotrimeric G proteins signaling, that varies depending on the type of plant-pathogen interaction. Furthermore, we tested the potential association between AGB1 with RBOHD and RBOHF during early immunity. Interestingly, our co-immunoprecipitation experiments point towards an association of AGB1 and the RBOHD regulatory kinase BIK1, thus providing a putative mechanism in the control of the NADPH oxidase function by AGB1. Taken all together, these studies provide further insights into the role that transcriptional control or the interaction with heterotrimeric G-proteins have on RBOH-NADPH oxidase-dependent ROS production and signaling in immunity. Our work exemplifies how, through a differential regulation, two members of a multigenic family achieve specialized physiological functions using a common enzymatic mechanism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Signal transduction through the leukocyte integrins is required for the processes of firm adhesion, activation, and chemotaxis of neutrophils during inflammatory reactions. Neutrophils isolated from knockout mice that are deficient in the expression of p59/61hck (Hck) and p58c-fgr (Fgr), members of the Src-family of protein tyrosine kinases, have been shown to be defective in adhesion mediated activation. Cells from these animals have impaired induction of respiratory burst and granule secretion following plating on surfaces that crosslink β2 and β3 integrins. To determine if the defective function of hck−/−fgr−/− neutrophils observed in vitro also results in impaired inflammatory responses in vivo, we examined responses induced by lipopolysaccharide (LPS) injection in these animals. The hck−/−fgr−/− mice showed marked resistance to the lethal effects of high-dose LPS injection despite the fact that high levels of serum tumor necrosis factor α and interleukin 1α were detected. Serum chemistry analysis revealed a marked reduction in liver and renal damage in mutant mice treated with LPS, whereas blood counts showed a marked neutrophilia that was not seen in wild-type animals. Direct examination of liver sections from mutant mice revealed reduced neutrophil migration into the tissue. These data demonstrate that defective integrin signaling in neutrophils, caused by loss of Hck and Fgr tyrosine kinase activity, results in impaired inflammation-dependent tissue injury in vivo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two monoclonal antibodies, anti-IL8R1 and anti-IL8R2, raised against both interleukin 8 receptors (IL-8R) of human neutrophils, IL-8R1 and IL-8R2, were used to study individual receptor functions after stimulation with IL-8, GRO alpha, or NAP-2. Efficacy and selectivity of the antibodies were tested in Jurkat cells transfected with cDNA coding for one or the other receptor. The binding of 125 I labeled IL-8 and IL-8-induced changes of the cytosolic free Ca2+ concentration were inhibited by anti-IL8RI in cells expressing IL-8R1 and by anti-IL8R2 in cells expressing IL-8R2. In human neutrophils, release of elastase was observed after stimulation with IL-8 or GRO alpha. The response to IL-8 was inhibited slightly by anti-IL8R1 and more substantially when both monoclonal antibodies were present, while the response to GRO alpha was inhibited by anti-IL8R2 but was not affected by anti-IL8R1. These results indicate that both IL-8 receptors can signal independently for granule enzyme release. Superoxide production, a measure of the respiratory burst, was obtained with increasing concentrations of IL-8 with maximum effects at 25 to 50 nM, but no response was observed upon challenge with GRO alpha or NAP-2 up to 1000 nM. The superoxide production induced by IL-8 was inhibited by anti-IL8R1, but was not affected by anti-IL8R2. Stimulation of neutrophils with IL-8, in contrast to GRO alpha or NAP-2, also elicited phospholipase D activity. The effect of IL-8 was again inhibited by anti-IL-8R1 but not by anti-IL8R2, indicating that this response, like the respiratory burst, was mediated by IL-8R1. Taken together, our results show that IL-8R1 and IL-8R2 are functionally different. Responses, such as cytosolic free Ca2+ changes and the release of granule enzymes, are mediated through both receptors, whereas the respiratory burst and the activation of phospholipase D depend exclusively on stimulation through IL-8R1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The phosphorylation-dependent mechanisms regulating activation of the human neutrophil respiratory-burst enzyme, NADPH oxidase, have not been elucidated. We have shown that phosphatidic acid (PA) and diacylglycerol (DG), products of phospholipase activation, synergize to activate NADPH oxidase in a cell-free system. We now report that activation by PA plus DG involves protein kinase activity, unlike other cell-free system activators. NADPH oxidase activation by PA plus DG is reduced approximately 70% by several protein kinase inhibitors [1-(5-isoquinolinesulfonyl)piperazine, staurosporine, GF-109203X]. Similarly, depletion of ATP by dialysis reduces PA plus DG-mediated NADPH oxidase activation by approximately 70%. Addition of ATP, but not a nonhydrolyzable ATP analog, to the dialyzed system restores activation levels to normal. In contrast, these treatments have little effect on NADPH oxidase activation by arachidonic acid or SDS plus DG. PA plus DG induces the phosphorylation of a number of endogenous proteins. Phosphorylation is largely mediated by PA, not DG. A predominant substrate is p47-phox, a phosphoprotein component of NADPH oxidase. Phosphorylation of p47-phox precedes activation of NADPH oxidase and is markedly reduced by the protein kinase inhibitors. In contrast, arachidonic acid alone or SDS plus DG is a poor activator of protein phosphorylation in the cell-free system. Thus, PA induces activation of one or more protein kinases that regulate NADPH oxidase activation in a cell-free system. This cell-free system will be useful for identifying a functionally important PA-activated protein kinase(s) and for dissecting the phosphorylation-dependent mechanisms responsible for NADPH oxidase activation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The oxidative burst is likely the most rapid defense response mounted by a plant under pathogen attack, and the generated oxidant species may be essential to several subsequent defense responses. In our effort to characterize the signal-transduction pathways leading to rapid H2O2/O2- biosynthesis, we have examined the role of protein phosphorylation in this resistance mechanism. K-252a and staurosporine, two protein-kinase inhibitors, were found to block the oxidative burst in a concentration-dependent manner. When added during H2O2 generation, the burst was observed to rapidly terminate, suggesting that continuous phosphorylation was essential for its maintenance. Importantly, phosphatase inhibitors (calyculin A and okadaic acid) were found to induce the oxidative burst in the absence of any additional stimulus. This may suggest that certain kinases required for the burst are constitutively active and that stabilization of the phosphorylated forms of their substrates is all that is required for burst activity. In autoradiographs of elicited and unstimulated cells equilibrated with 32PO4(3-), several phosphorylated polypeptide bands were revealed that could represent proteins essential for the burst.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

GABAergic and glycinergic synaptic transmission is proposed to promote the maturation and refinement of the developing CNS. Here we provide morphological and functional evidence that glycinergic and GABAergic synapses control motoneuron development in a region-specific manner during programmed cell death. In gephyrin-deficient mice that lack all postsynaptic glycine receptor and some GABA(A) receptor clusters, there was increased spontaneous respiratory motor activity, reduced respiratory motoneuron survival, and decreased innervation of the diaphragm. In contrast, limb-innervating motoneurons showed decreased spontaneous activity, increased survival, and increased innervation of their target muscles. Both GABA and glycine increased limb-innervating motoneuron activity and decreased respiratory motoneuron activity in wild-type mice, but only glycine responses were abolished in gephyrin-deficient mice. Our results provide genetic evidence that the development of glycinergic and GABAergic synaptic inputs onto motoneurons plays an important role in the survival, axonal branching, and spontaneous activity of motoneurons in developing mammalian embryos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mitochondria are involved in energy supply, signaling, cell death and cellular differentiation and have been implicated in several human diseases. Neks (NIMA-related kinases) represent a family of mammal protein kinases that play essential roles in cell-cycle progression, but other functions have recently been related. A yeast two-hybrid (Y2H) screen was performed to identify and characterize Nek5 interaction partners and the mitochondrial proteins Cox11, MTX-2 and BCLAF1 were retrieved. Apoptosis assay showed protective effects of stable hNek5 expression from Hek293-T's cell death after thapsigargin treatment (2μM). Nek5 silenced cells as well as cells expressing a kinase dead version of Nek5, displayed an increase in ROS formation after 4h of thapsigargin treatment. Mitochondrial respiratory chain activity was found decreased upon stable hNek5expression. Cells silenced for hNek5 on the other hand presented 1.7 fold increased basal rates of respiration, especially at the electrons transfer steps from TMPD to cytochrome c and at the complex II. In conclusion, our data suggest for the first time mitochondrial localization and functions for Nek5 and its participation in cell death and cell respiration regulation. Stable expression of hNek5 in Hek293T cells resulted in enhanced cell viability, decreased cell death and drug resistance, while depletion of hNek5by shRNA overcame cancer cell drug resistance and induced apoptosis in vitro. Stable expression of hNek5 also inhibits thapsigargin promoted apoptosis and the respiratory chain complex IV in HEK293T cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chelonia mydas is a sea turtle that feeds and nests on the Brazilian coast and a disease called fibropapillomatosis is a threat to this species. Because of this, it is extremely necessary to determine a methodology that would enable the analysis of blood leukocyte function in these sea turtles. In order to achieve this aim, blood samples were collected from C. mydas with or without fibropapillomas captured on the São Paulo north coast. Blood samples were placed in tubes containing sodium heparin and were transported under refrigeration to the laboratory in sterile RPMI 1640 cell culture medium. Leukocytes were separated by density gradient using Ficoll-PaqueTM Plus, Amershan Biociences®. The following stimuli were applied in the assessment of leukocyte function: Phorbol Miristate-Acetate (PMA) for oxidative burst activity evaluation and Zymosan A (Saccharomyces cerevisiae) Bio Particles®, Alexa Fluor® 594 conjugate for phagocytosis evaluation. Three cell populations were identified: heterophils, monocytes and lymphocytes. Monocytes were the cells responsible for phagocytosis and oxidative burst.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The D-mannose binding lectin ArtinM from Artocarpus integrifolia, previously known as KM+ and artocarpin. is considered a stimulant of Th1-type immunity, which is able to confer resistance to some intracellular pathogens. In addition, ArtinM induces neutrophil migration by haptotaxis through simultaneous interactions of its carbohydrate recognition domains (CRDs) with glycans expressed on the extracellular matrix and the neutrophil surface. In the present study, we have expanded the characterization of ArtinM as a neutrophil activator. Exposure of neutrophils to ArtinM for 15 min resulted in tyrosine phosphorylation of intracellular proteins, a process that was selectively inhibited by D-mannose or mannotriose. Shortly after stimulation, neutrophils secreted high levels of LTB(4) and underwent shedding of L-selectin from their surface. Exposure to ArtinM enhanced neutrophil functions, such as respiratory burst and zymozan and Listeria monocytogenes phagocytosis. In addition, ArtinM-stimulated neutrophils displayed increased CXCL-8 secretion and TLR2 gene transcription. These results demonstrate that ArtinM is able to induce potent neutrophil activation, a feature that should be strongly considered in the assessment of the lectin capacity to confer resistance against infections. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peritoneal exudate cells from mice infected with Schistosoma mansoni (S-PEC) can kill schistosomula in vitro in the presence of immune serum. S-PEC produce a low level of respiratory burst, and schistosomula mortality in their presence is not reduced when exogenous antioxidants are added, suggesting that with S-PEC, oxidative killing is not important. Hydrogen peroxide (H2O2) and superoxide production by S-PEC, and cells from BCG and thioglycollate (THGL) injected non-infected mice, non-specifically stimulated with opsonized zymosan, were measured. Levels of H2O2 produced by S-PEC were significantly lower than BCG or THGL PEC, and were below the H2O2 threshold for schistosomula killing. This resulted in lower levels of cell-mediated killing of schistosomula in vitro by S-PEC than by BCG or THGL PEC. Superoxide levels, however, were similar between the three cell populations. The efficiency of PEC to kill schistosomules in vitro correlated with H2O2 rather than superoxide levels. The lower tolerance of schistosomula, compared to adult S. mansoni to GSH depleting agents increases their sensitivity to oxidative attack and resulted in higher levels of cell-mediated killing in vitro.