822 resultados para residential demand side management
Resumo:
The Schumpelerian model of endogeno~s growlh is generalized with lhe introduction of stochastic resislance. by agenls other Ihan producers. to lhe innovations which drive growth. This causes a queue to be formcd of innovations, alrcady discovered, bUI waiting to be adopled~ A slationary stochastic equilibrium (SSE) is obtained when the queue is stable~ It is shown that in the SSE, such resistance will always reduce lhe average growth iate hut it may increa~e wclfare in certain silualions. In an example, Ihis is when innovatiuns are small anti monopoly power great. The cont1icl hetween this welfare motive for resistance and those of rent-seeking innovalors.may well explain why growth rates differ.
Resumo:
This paper provides a broad overview of recent trends in solid waste and recycling, related public policy issues, and the economics literature devoted to these topics. Public attention to solid waste and recycling has increased dramatically over the past decade both in the United States and in Europe. In response, economists have developed models to help policy makers choose the efficient mix of policy levers to regulate solid waste and recycling activities. Economists have also employed different kinds of data to estimate the factors that contribute to the generation of residential solid waste and recycling and to estimate the effectiveness of many of the policy options employed.
Resumo:
This paper presents the results of the analysis focused on scientific-technological KT in four Mexican firms and carried out by the case study approach. The analysis highlights the use of KT mechanisms as a means to obtain scientific-technological knowledge, learning, building S&T capabilities, and achieve the results of the R&D and innovation by firms.
Resumo:
The uncertainty associated to the forecast of photovoltaic generation is a major drawback for the widespread introduction of this technology into electricity grids. This uncertainty is a challenge in the design and operation of electrical systems that include photovoltaic generation. Demand-Side Management (DSM) techniques are widely used to modify energy consumption. If local photovoltaic generation is available, DSM techniques can use generation forecast to schedule the local consumption. On the other hand, local storage systems can be used to separate electricity availability from instantaneous generation; therefore, the effects of forecast error in the electrical system are reduced. The effects of uncertainty associated to the forecast of photovoltaic generation in a residential electrical system equipped with DSM techniques and a local storage system are analyzed in this paper. The study has been performed in a solar house that is able to displace a residential user?s load pattern, manage local storage and estimate forecasts of electricity generation. A series of real experiments and simulations have carried out on the house. The results of this experiments show that the use of Demand Side Management (DSM) and local storage reduces to 2% the uncertainty on the energy exchanged with the grid. In the case that the photovoltaic system would operate as a pure electricity generator feeding all generated electricity into grid, the uncertainty would raise to around 40%.
Resumo:
The paper criticises the neo-classical assumptions of perfect factor markets and of complete information, which constitute central elements in labour market theory. Based on literature review and on economic reports from transition economies, as well as developing countries and more advanced economies, this deliverable focuses on the structural impediments and imperfections which often characterise rural labour markets and which may prevent an efficient allocation of labour. According to empirical studies, transactions costs and rigidities hinder the well-functioning of labour markets and constrain labour adjustments. The paper attempts to classify the various limitations of rural labour markets from both supply and demand side, although the distinction is not always clear-cut as some problems occur on both sides. The identification of these issues is extremely important as it allows us to highlight the inefficiencies and the failures in labour markets and to understand their impact on labour allocation. In this context, market intervention is desirable and the paper provides particular support for rural development policies such as investments in human capital. Lastly, labour institutions can play a key role in promoting the well functioning of labour markets, thus it is fundamental that they are well in place.
Resumo:
The representation of the thermal behaviour of the building is achieved through a relatively simple dynamic model that takes into account the effects due to the thermal mass of the building components. The model of a intra-floor apartment has been built in the Matlab-Simulink environment and considers the heat transmission through the external envelope, wall and windows, the internal thermal masses, (i.e. furniture, internal wall and floor slabs) and the sun gain due to opaque and see-through surfaces of the external envelope. The simulations results for the entire year have been compared and the model validated, with the one obtained with the dynamic building simulation software Energyplus.
Resumo:
Sunset project manager : Terry H. Stoica.
Resumo:
This paper investigates the impact that electric vehicle uptake will have on the national electricity demand of Great Britain. Data from the National Travel Survey, and the Coventry and Birmingham Low Emissions Demonstration (CABLED) are used to model an electrical demand profile in a future scenario of significant electric vehicle market penetration. These two methods allow comparison of how conventional cars are currently used, and the resulting electrical demand with simple substitution of energy source, with data showing how electric vehicles are actually being used at present. The report finds that electric vehicles are unlikely to significantly impact electricity demand in GB. The paper also aims to determine whether electric vehicles have the potential to provide ancillary services to the grid operator, and if so, the capacity for such services that would be available. Demand side management, frequency response and Short term Operating Reserve (STOR) are the services considered. The report finds that electric cars are unlikely to provide enough moveable demand peak shedding to be worthwhile. However, it is found that controlling vehicle charging would provide sufficient power control to viably act as frequency response for dispatch by the transmission system operator. This paper concludes that electric vehicles have technical potential to aid management of the transmission network without adding a significant demand burden. © 2013 IEEE.
Resumo:
Vehicle-to-Grid (V2G) system with efficient Demand Response Management (DRM) is critical to solve the problem of supplying electricity by utilizing surplus electricity available at EVs. An incentivilized DRM approach is studied to reduce the system cost and maintain the system stability. EVs are motivated with dynamic pricing determined by the group-selling based auction. In the proposed approach, a number of aggregators sit on the first level auction responsible to communicate with a group of EVs. EVs as bidders consider Quality of Energy (QoE) requirements and report interests and decisions on the bidding process coordinated by the associated aggregator. Auction winners are determined based on the bidding prices and the amount of electricity sold by the EV bidders. We investigate the impact of the proposed mechanism on the system performance with maximum feedback power constraints of aggregators. The designed mechanism is proven to have essential economic properties. Simulation results indicate the proposed mechanism can reduce the system cost and offer EVs significant incentives to participate in the V2G DRM operation.
Resumo:
Power systems require a reliable supply and good power quality. The impact of power supply interruptions is well acknowledged and well quantified. However, a system may perform reliably without any interruptions but may have poor power quality. Although poor power quality has cost implications for all actors in the electrical power systems, only some users are aware of its impact. Power system operators are much attuned to the impact of low power quality on their equipment and have the appropriate monitoring systems in place. However, over recent years certain industries have come increasingly vulnerable to negative cost implications of poor power quality arising from changes in their load characteristics and load sensitivities, and therefore increasingly implement power quality monitoring and mitigation solutions. This paper reviews several historical studies which investigate the cost implications of poor power quality on industry. These surveys are largely focused on outages, whilst the impact of poor power quality such as harmonics, short interruptions, voltage dips and swells, and transients is less well studied and understood. This paper examines the difficulties in quantifying the costs of poor power quality, and uses the chi-squared method to determine the consequences for industry of power quality phenomenon using a case study of over 40 manufacturing and data centres in Ireland.
Resumo:
Demand response (DR) algorithms manipulate the energy consumption schedules of controllable loads so as to satisfy grid objectives. Implementation of DR algorithms using a centralized agent can be problematic for scalability reasons, and there are issues related to the privacy of data and robustness to communication failures. Thus, it is desirable to use a scalable decentralized algorithm for the implementation of DR. In this paper, a hierarchical DR scheme is proposed for peak minimization based on Dantzig-Wolfe decomposition (DWD). In addition, a time weighted maximization option is included in the cost function, which improves the quality of service for devices seeking to receive their desired energy sooner rather than later. This paper also demonstrates how the DWD algorithm can be implemented more efficiently through the calculation of the upper and lower cost bounds after each DWD iteration.
Resumo:
The penetration of the electric vehicle (EV) has increased rapidly in recent years mainly as a consequence of advances in transport technology and power electronics and in response to global pressure to reduce carbon emissions and limit fossil fuel consumption. It is widely acknowledged that inappropriate provision and dispatch of EV charging can lead to negative impacts on power system infrastructure. This paper considers EV requirements and proposes a module which uses owner participation, through mobile phone apps and on-board diagnostics II (OBD-II), for scheduled vehicle charging. A multi-EV reference and single-EV real-time response (MRS2R) online algorithm is proposed to calculate the maximum and minimum adjustable limits of necessary capacity, which forms part of decision-making support in power system dispatch. The proposed EV dispatch module is evaluated in a case study and the influence of the mobile app, EV dispatch trending and commercial impact is explored.
Resumo:
This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.
Resumo:
This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.