960 resultados para remote sensing (RS)
Resumo:
Selostus: Maatalousekosysteemien analysointi ja sadon ennustaminen kaukokartoituksen avulla
Resumo:
Field-based soil moisture measurements are cumbersome. Thus, remote sensing techniques are needed because allows field and landscape-scale mapping of soil moisture depth-averaged through the root zone of existing vegetation. The objective of the study was to evaluate the accuracy of an empirical relationship to calculate soil moisture from remote sensing data of irrigated soils of the Apodi Plateau, in the Brazilian semiarid region. The empirical relationship had previously been tested for irrigated soils in Mexico, Egypt, and Pakistan, with promising results. In this study, the relationship was evaluated from experimental data collected from a cotton field. The experiment was carried out in an area of 5 ha with irrigated cotton. The energy balance and evaporative fraction (Λ) were measured by the Bowen ratio method. Soil moisture (θ) data were collected using a PR2 - Profile Probe (Delta-T Devices Ltd). The empirical relationship was tested using experimentally collected Λ and θ values and was applied using the Λ values obtained from the Surface Energy Balance Algorithm for Land (SEBAL) and three TM - Landsat 5 images. There was a close correlation between measured and estimated θ values (p<0.05, R² = 0.84) and there were no significant differences according to the Student t-test (p<0.01). The statistical analyses showed that the empirical relationship can be applied to estimate the root-zone soil moisture of irrigated soils, i.e. when the evaporative fraction is greater than 0.45.
Resumo:
Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.
Resumo:
Remote sensing image processing is nowadays a mature research area. The techniques developed in the field allow many real-life applications with great societal value. For instance, urban monitoring, fire detection or flood prediction can have a great impact on economical and environmental issues. To attain such objectives, the remote sensing community has turned into a multidisciplinary field of science that embraces physics, signal theory, computer science, electronics, and communications. From a machine learning and signal/image processing point of view, all the applications are tackled under specific formalisms, such as classification and clustering, regression and function approximation, image coding, restoration and enhancement, source unmixing, data fusion or feature selection and extraction. This paper serves as a survey of methods and applications, and reviews the last methodological advances in remote sensing image processing.
Resumo:
Remote sensing was utilized in the Phase II Cultural Resources Investigation for this project in lieu of extensive excavations. The purpose of the present report is to compare the costs and benefits of the use of remote sensing to the hypothetical use of traditional excavation methods for this project. Estimates for this hypothetical situation are based on the project archaeologist's considerable past experience in conducting similar investigations. Only that part of the Phase II investigation involving field investigations is addressed in this report. Costs for literature review, laboratory analysis, report preparation, etc., are not included. The project manager proposed the use of this technique for the fol lowing logistic, safety and budgetary reasons.
Resumo:
The main objective of this study was to utilize light detection and ranging (LIDAR) technology to obtain highway safety-related information. The safety needs of older drivers in terms of prolonged reaction times were taken into consideration. The tasks undertaken in this study were (1) identification of crashes that older drivers are more likely to be involved in, (2) identification of highway geometric features that are important in such crashes, (3) utilization of LIDAR data for obtaining information on the identified highway geometric features, and (4) assessment of the feasibility of using LIDAR data for such applications. A review of previous research indicated that older drivers have difficulty negotiating intersections, and it was recognized that intersection sight triangles were critical to safe intersection negotiation. LIDAR data were utilized to obtain information on potential sight distance obstructions at six selected intersections located on the Iowa Highway 1 corridor by conducting in-office line-of-sight analysis. Crash frequency, older driver involvement, and data availability were considerations in the selection of the six intersections. Results of the in-office analysis were then validated by visiting the intersections in the field. Sixty-six potential sight distance obstructions were identified by the line-of-sight analysis, out of which 62 (89.8%) were confirmed while four (5.8%) were not confirmed by the video. At least three (4.4%) potential sight distance obstructions were discovered in the video that were not detected by the line-of-sight analysis. The intersection with the highest crash frequency involving older drivers was correctly found to have obstructions located within the intersection sight triangles. Based on research results, it is concluded that LIDAR data can be utilized for identifying potential sight distance obstructions at intersections. The safety of older drivers can be enhanced by locating and rectifying intersections with obstructions in sight triangles.
Resumo:
The Federal Highway Administration mandates that states collect traffic count information at specified intervals to meet the needs of the Highway Performance Monitoring System (HPMS). A manual land use change detection method was employed to determine the effects of land use change on traffic for Black Hawk County, Iowa, from 1994 to 2002. Results from land use change detection could enable redirecting traffic count activities and related data management resources to areas that are experiencing the greatest changes in land use and related traffic volume. Including a manual land use change detection process in the Iowa Department of Transportation’s traffic count program has the potential to improve efficiency by focusing monitoring activities in areas more likely to experience significant increase in traffic.
Resumo:
The Center for Transportation Research and Education (CTRE) issued a report in July 2003, based on a sample study of the application of remote sensed image land use change detection to the methodology of traffic monitoring in Blackhawk County, Iowa. In summary, the results indicated a strong correlation and a statistically significant regression coefficient between the identification of built-up land use change areas from remote sensed data and corresponding changes in traffic patterns, expressed as vehicle miles traveled (VMT). Based on these results, the Iowa Department of Transportation (Iowa DOT) requested that CTRE expand the study area to five counties in the southwest quadrant of the state. These counties are scheduled for traffic counts in 2004, and the Iowa DOT desired the data to 1) evaluate the current methodology used to place the devices; 2) potentially influence the placement of traffic counting devices in areas of high built-up land use change; and 3) determine if opportunities exist to reduce the frequency and/or density of monitoring activity in lower trafficked rural areas of the state. This project is focused on the practical application of built-up land use change data for placement of traffic count data recording devices in five southwest Iowa counties.
Resumo:
This report evaluates the use of remotely sensed images in implementing the Iowa DOT LRS that is currently in the stages of system architecture. The Iowa Department of Transportation is investing a significant amount of time and resources into creation of a linear referencing system (LRS). A significant portion of the effort in implementing the system will be creation of a datum, which includes geographically locating anchor points and then measuring anchor section distances between those anchor points. Currently, system architecture and evaluation of different data collection methods to establish the LRS datum is being performed for the DOT by an outside consulting team.
Resumo:
Abstract
Resumo:
Peer-reviewed
Resumo:
The objective of this work was to evaluate the use of multispectral remote sensing for site-specific nitrogen fertilizer management. Satellite imagery from the advanced spaceborne thermal emission and reflection radiometer (Aster) was acquired in a 23 ha corn-planted area in Iran. For the collection of field samples, a total of 53 pixels were selected by systematic randomized sampling. The total nitrogen content in corn leaf tissues in these pixels was evaluated. To predict corn canopy nitrogen content, different vegetation indices, such as normalized difference vegetation index (NDVI), soil-adjusted vegetation index (Savi), optimized soil-adjusted vegetation index (Osavi), modified chlorophyll absorption ratio index 2 (MCARI2), and modified triangle vegetation index 2 (MTVI2), were investigated. The supervised classification technique using the spectral angle mapper classifier (SAM) was performed to generate a nitrogen fertilization map. The MTVI2 presented the highest correlation (R²=0.87) and is a good predictor of corn canopy nitrogen content in the V13 stage, at 60 days after cultivating. Aster imagery can be used to predict nitrogen status in corn canopy. Classification results indicate three levels of required nitrogen per pixel: low (0-2.5 kg), medium (2.5-3 kg), and high (3-3.3 kg).