922 resultados para regime shift
Resumo:
Regime shift and principal component analysis of a spatially disaggregated database capturing time-series of climatic, nutrient and plankton variables in the North Sea revealed considerable covariance between groups of ecosystem indicators. Plankton and climate time-series span the period 1958–2003, those of nutrients start in 1980. In both regions, the period from 1989 to 2001 identified in principal component 1 had warmer surface waters, higher Atlantic inflow and stronger winds, than the periods before or after. However, it was preceded by a regime shift in both open (PC2) and coastal (PC3) waters during 1977 towards more hours of sunlight and higher water temperature, which lasted until 1997. The relative influence of nutrient availability and climatic forcing differed between open and coastal North Sea regions. Inter-annual variability in phytoplankton dynamics of the open North Sea was primarily regulated by climatic forcing, specifically by sea surface temperature, Atlantic inflow and co-varying wind stress and NAO. Coastal phytoplankton variability, however, was regulated by insolation and sea surface temperature, as well as Si availability, but not by N or P. Regime shifts in principal components of hydrographic and climatic variables (explaining 55 and 61% of the variance in coastal and open water variables) were detected using Rodionov's sequential t-test. These shifts in hydroclimatic variables which occurred around 1977, 1989, 1997 and 2001, were synchronized in open and coastal waters, and were tracked by open water chlorophyll and copepods, but not by coastal plankton. North–central–south or open-coastal spatial breakdowns of the North Sea explained similar amounts of variability in most ecosystem indicators with the exception of diatom abundance and chlorophyll concentration, which were clearly better explained using the open-coastal configuration.
Resumo:
Environmentally induced change appears to be impacting the recruitment of North Sea herring (Clupea harengus). Despite simultaneously having a large adult population, historically low exploitation, and Marine Stewardship Council accreditation (implying sustainability), there have been an unprecedented 6 sequential years of poor juvenile production (recruitment). Analysis suggests that the poor recruitment arises during the larval overwintering phase, with recent survival rates greatly reduced. Contemporary warming of the North Sea has caused significant changes in the plankton community, and a recently identified regime shift around 2000 shows close temporal agreement with the reduced larval survival. It is, therefore, possible that we are observing the first consequences of this planktonic change for higher trophic levels. There is no indication of a recovery in recruitment in the short term. Fishing mortality is currently outside the agreed management plan, and forecasts show a high risk of the stock moving outside safe biological limits soon, potentially precipitating another collapse of the stock. However, bringing the realized fishing mortality back in line with the management plan would likely alleviate the problem. This illustrates again that recruitment is influenced by more than just spawning-stock biomass, and that changes in other factors can be of equal, or even greater, importance. In such dynamically changing environments, recent management success does not necessarily guarantee future sustainability.
Resumo:
Advances in habitat and climate modelling allow us to reduce uncertainties of climate change impacts on species distribution. We evaluated the impacts of future climate change on community structure, diversity, distribution and phenology of 14 copepod species in the North Atlantic. We developed and validated habitat models for key zooplankton species using continuous plankton recorder (CPR) survey data collected at mid latitudes of the North Atlantic. Generalized additive models (GAMs) were applied to relate the occurrence of species to environmental variables. Models were projected to future (2080–2099) environmental conditions using coupled hydroclimatix–biogeochemical models under the Intergovernmental Panel on Climate Change (IPCC) A1B climate scenario, and compared to present (2001–2020) conditions. Our projections indicated that the copepod community is expected to respond substantially to climate change: a mean poleward latitudinal shift of 8.7 km per decade for the overall community with an important species range variation (–15 to 18 km per decade); the species seasonal peak is expected to occur 12–13 d earlier for Calanus finmarchicus and C. hyperboreus; and important changes in community structure are also expected (high species turnover of 43–79% south of the Oceanic Polar Front). The impacts of the change expected by the end of the century under IPCC global warming scenarios on copepods highlight poleward shifts, earlier seasonal peak and changes in biodiversity spatial patterns that might lead to alterations of the future North Atlantic pelagic ecosystem. Our model and projections are supported by a temporal validation undertaken using the North Atlantic climate regime shift that occurred in the 1980s: the habitat model built in the cold period (1970–1986) has been validated in the warm period (1987–2004).
Resumo:
Evidence of 11-year Schwabe solar sunspot cycles, El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) were detected in an annual record of diatomaceous laminated sediments from anoxic Effingham Inlet, Vancouver Island, British Columbia. Radiometric dating and counting of annual varves dates the sediments from AD 1947-1993. Intact sediment slabs were X-rayed for sediment structure (lamina thickness and composition based on gray-scale), and subsamples were examined for diatom abundances and for grain size. Wavelet analysis reveals the presence of ~2-3, ~4.5, ~7 and ~9-12-year cycles in the diatom record and an w11e13 year record in the sedimentary varve thickness record. These cycle lengths suggest that both ENSO and the sunspot cycle had an influence on primary productivity and sedimentation patterns. Sediment grain size could not be correlated to the sunspot cycle although a peak in the grain size data centered around the mid-1970s may be related to the 1976-1977 Pacific climate shift, which occurred when the PDO index shifted from negative (cool conditions) to positive (warm conditions). Additional evidence of the PDO regime shift is found in wavelet and cross-wavelet results for Skeletonema costatum, a weakly silicified variant of S. costatum, annual precipitation and April to June precipitation. Higher spring (April/May) values of the North Pacific High pressure index during sunspot minima suggest that during this time, increased cloud cover and concomitant suppression of the Aleutian Low (AL) pressure system led to strengthened coastal upwelling and enhanced diatom production earlier in the year. These results suggest that the 11-year solar cycle, amplified by cloud cover and upwelling changes, as well as ENSO, exert significant influence on marine primary productivity in the northeast Pacific. The expression of these cyclic phenomena in the sedimentary record were in turn modulated by the phase of PDO, as indicated by the change in period of ENSO and suppression of the solar signal in the record after the 1976-1977 regime shift. © 2013 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
Tese de doutoramento, Biologia (Biologia Marinha e Aquacultura), Universidade de Lisboa, Faculdade de Ciências, 2015
Resumo:
Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Jornalismo.
Resumo:
The Doctoral thesis focuses on the factors that influence the weather and climate over Peninsular Indias. The first chapter provides a general introduction about the climatic features over peninsular India, various factors dealt in subsequent chapters, such as solar forcing on climate, SST variability in the northern Indian Ocean and its influence on Indian monsoon, moisture content of the atmosphere and its importance in the climate system, empirical formulation of regression forecast of climate and some aspects of regional climate modeling. Chapter 2 deals with the variability in the vertically integrated moisture (VIM) over Peninsular India on various time scales. The third Chapter discusses the influence of solar activity in the low frequency variability in the rainfall of Peninsular India. The study also investigates the influence of solar activity on the horizontal and vertical components of wind and the difference in the forcing before and after the so-called regime shift in the climate system before and after mid-1970s.In Chapter 4 on Peninsular Indian Rainfall and its association with meteorological and oceanic parameters over adjoining oceanic region, a linear regression model was developed and tested for the seasonal rainfall prediction of Peninsular India.
Resumo:
The proposal to move to a full banking union in the eurozone means a radical regime shift for the EU, since the European Central Bank will supervise the eurozone banks and effectively end ‘home country rule’. But how this is implemented raises a number of questions and needs close monitoring, explains CEPS CEO Karel Lannoo in this new Commentary.
Resumo:
This paper combines and generalizes a number of recent time series models of daily exchange rate series by using a SETAR model which also allows the variance equation of a GARCH specification for the error terms to be drawn from more than one regime. An application of the model to the French Franc/Deutschmark exchange rate demonstrates that out-of-sample forecasts for the exchange rate volatility are also improved when the restriction that the data it is drawn from a single regime is removed. This result highlights the importance of considering both types of regime shift (i.e. thresholds in variance as well as in mean) when analysing financial time series.
Resumo:
Previous studies reported that positive phases of the Indian Ocean Dipole (IOD) tend to accompany El Niño during boreal autumn. Here we show that the El Niño/IOD relationship can be better understood when considering the two different El Niño flavors. Eastern-Pacific (EP) El Niño events exhibit a strong correlation with the IOD dependent on their magnitude. In contrast, the relationship between Central-Pacific (CP) El Niño events and the IOD depends mainly on the zonal location of the sea surface temperature anomalies rather than their magnitude. CP El Niño events lying further west than normal are not accompanied by significant anomalous easterlies over the eastern Indian Ocean along the Java/Sumatra coast, which is unfavorable for the local Bjerknes feedback and correspondingly for an IOD development. The El Niño/IOD relationship has experienced substantial changes due to the recent decadal El Niño regime shift, which has important implications for seasonal prediction.
Resumo:
In this pilot study water was extracted from samples of two Holocene stalagmites from Socotra Island, Yemen, and one Eemian stalagmite from southern continental Yemen. The amount of water extracted per unit mass of stalagmite rock, termed "water yield" hereafter, serves as a measure of its total water content. Based on direct correlation plots of water yields and δ18Ocalcite and on regime shift analyses, we demonstrate that for the studied stalagmites the water yield records vary systematically with the corresponding oxygen isotopic compositions of the calcite (δ18Ocalcite). Within each stalagmite lower δ18Ocalcite values are accompanied by lower water yields and vice versa. The δ18Ocalcite records of the studied stalagmites have previously been interpreted to predominantly reflect the amount of rainfall in the area; thus, water yields can be linked to drip water supply. Higher, and therefore more continuous drip water supply caused by higher rainfall rates, supports homogeneous deposition of calcite with low porosity and therefore a small fraction of water-filled inclusions, resulting in low water yields of the respective samples. A reduction of drip water supply fosters irregular growth of calcite with higher porosity, leading to an increase of the fraction of water-filled inclusions and thus higher water yields. The results are consistent with the literature on stalagmite growth and supported by optical inspection of thin sections of our samples. We propose that for a stalagmite from a dry tropical or subtropical area, its water yield record represents a novel paleo-climate proxy recording changes in drip water supply, which can in turn be interpreted in terms of associated rainfall rates.
Resumo:
We analyse the ability of CMIP3 and CMIP5 coupled ocean–atmosphere general circulation models (CGCMs) to simulate the tropical Pacific mean state and El Niño-Southern Oscillation (ENSO). The CMIP5 multi-model ensemble displays an encouraging 30 % reduction of the pervasive cold bias in the western Pacific, but no quantum leap in ENSO performance compared to CMIP3. CMIP3 and CMIP5 can thus be considered as one large ensemble (CMIP3 + CMIP5) for multi-model ENSO analysis. The too large diversity in CMIP3 ENSO amplitude is however reduced by a factor of two in CMIP5 and the ENSO life cycle (location of surface temperature anomalies, seasonal phase locking) is modestly improved. Other fundamental ENSO characteristics such as central Pacific precipitation anomalies however remain poorly represented. The sea surface temperature (SST)-latent heat flux feedback is slightly improved in the CMIP5 ensemble but the wind-SST feedback is still underestimated by 20–50 % and the shortwave-SST feedbacks remain underestimated by a factor of two. The improvement in ENSO amplitudes might therefore result from error compensations. The ability of CMIP models to simulate the SST-shortwave feedback, a major source of erroneous ENSO in CGCMs, is further detailed. In observations, this feedback is strongly nonlinear because the real atmosphere switches from subsident (positive feedback) to convective (negative feedback) regimes under the effect of seasonal and interannual variations. Only one-third of CMIP3 + CMIP5 models reproduce this regime shift, with the other models remaining locked in one of the two regimes. The modelled shortwave feedback nonlinearity increases with ENSO amplitude and the amplitude of this feedback in the spring strongly relates with the models ability to simulate ENSO phase locking. In a final stage, a subset of metrics is proposed in order to synthesize the ability of each CMIP3 and CMIP5 models to simulate ENSO main characteristics and key atmospheric feedbacks.
Resumo:
We continue former work on the modeling of potential effects of Gamma Ray Bursts on Phanerozoic Earth. We focus on global biospheric effects of ozone depletion and model the spectral reduction of light by NO(2) formed in the stratosphere. We also illustrate the current complexities involved in the prediction of how terrestrial ecosystems would respond to this kind of burst. We conclude that more biological field and laboratory data are needed to reach even moderate accuracy in this modeling.
Resumo:
This paper applies an endogenous lobby formation model to explain the extent of trade protection granted to Brazilian manufacturing industries during the 1988- 1994 trade liberalization episode. Using a panel data set covering this period, we find that even in an environment in which a major regime shift has been introduced, more concentrated sectors have been able to obtain policy advantages, that lead to a reduction in international competition. The importance of industry structure appears to be substantial: In our baseline specification, an increase in concentration by 20% leads to an increase in protection by 5%-7%.