987 resultados para reference modelling
Resumo:
This study pertains to a random sample of untreated French-Canadian adolescents (79 females and 107 males) evaluated at 10 and again at 15 years of age. Superimpositions on natural reference structures were performed to describe condylar growth and modelling of 11 mandibular landmarks. Superimpositions on natural cranial/cranial base reference structures were performed to describe mandibular displacement and true rotation.The results showed significant superior and posterior growth/modelling of the condyle and ramus. Males underwent significantly (P < 0.01) greater condylar growth and ramus modelling than females. With the exception of point B, which showed significant superior drift, modelling changes for the corpus landmarks were small and variable. The mandible rotated forward 2-3.3 degrees and was displaced 9.6-12.7 mm inferiorly and 1.9-2.7 mm anteriorly. Individual differences in ramus growth and modelling, both amount and direction, can be explained by mandibular rotation and displacements. Multivariate assessments revealed that superior condylar growth and ramus modelling were most closely associated with forward rotation and inferior mandibular displacement. Posterior growth and modelling were most closely correlated with anterior mandibular displacement and forward rotation. Modelling of the lower anterior border was independent of rotation and displacement.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Motivated by rising drilling operation costs, the oil industry has shown a trend towards real-time measurements and control. In this scenario, drilling control becomes a challenging problem for the industry, especially due to the difficulty associated to parameters modeling. One of the drill-bit performance evaluators, the Rate of Penetration (ROP), has been used in the literature as a drilling control parameter. However, the relationships between the operational variables affecting the ROP are complex and not easily modeled. This work presents a neuro-genetic adaptive controller to treat this problem. It is based on the Auto-Regressive with Extra Input Signals model, or ARX model, to accomplish the system identification and on a Genetic Algorithm (GA) to provide a robust control for the ROP. Results of simulations run over a real offshore oil field data, consisted of seven wells drilled with equal diameter bits, are provided. © 2006 IEEE.
Resumo:
Companies are currently choosing to integrate logics and systems to achieve better solutions. These combinations also include companies striving to join the logic of material requirement planning (MRP) system with the systems of lean production. The purpose of this article was to design an MRP as part of the implementation of an enterprise resource planning (ERP) in a company that produces agricultural implements, which has used the lean production system since 1998. This proposal is based on the innovation theory, theory networks, lean production systems, ERP systems and the hybrid production systems, which use both components and MRP systems, as concepts of lean production systems. The analytical approach of innovation networks enables verification of the links and relationships among the companies and departments of the same corporation. The analysis begins with the MRP implementation project carried out in a Brazilian metallurgical company and follows through the operationalisation of the MRP project, until its production stabilisation. The main point is that the MRP system should help the company's operations with regard to its effective agility to respond in time to demand fluctuations, facilitating the creation process and controlling the branch offices in other countries that use components produced in the matrix, hence ensuring more accurate estimates of stockpiles. Consequently, it presents the enterprise knowledge development organisational modelling methodology in order to represent further models (goals, actors and resources, business rules, business process and concepts) that should be included in this MRP implementation process for the new configuration of the production system.
Resumo:
Semiconductors technologies are rapidly evolving driven by the need for higher performance demanded by applications. Thanks to the numerous advantages that it offers, gallium nitride (GaN) is quickly becoming the technology of reference in the field of power amplification at high frequency. The RF power density of AlGaN/GaN HEMTs (High Electron Mobility Transistor) is an order of magnitude higher than the one of gallium arsenide (GaAs) transistors. The first demonstration of GaN devices dates back only to 1993. Although over the past few years some commercial products have started to be available, the development of a new technology is a long process. The technology of AlGaN/GaN HEMT is not yet fully mature, some issues related to dispersive phenomena and also to reliability are still present. Dispersive phenomena, also referred as long-term memory effects, have a detrimental impact on RF performances and are due both to the presence of traps in the device structure and to self-heating effects. A better understanding of these problems is needed to further improve the obtainable performances. Moreover, new models of devices that take into consideration these effects are necessary for accurate circuit designs. New characterization techniques are thus needed both to gain insight into these problems and improve the technology and to develop more accurate device models. This thesis presents the research conducted on the development of new charac- terization and modelling methodologies for GaN-based devices and on the use of this technology for high frequency power amplifier applications.
Resumo:
Waste management represents an important issue in our society and Waste-to-Energy incineration plants have been playing a significant role in the last decades, showing an increased importance in Europe. One of the main issues posed by waste combustion is the generation of air contaminants. Particular concern is present about acid gases, mainly hydrogen chloride and sulfur oxides, due to their potential impact on the environment and on human health. Therefore, in the present study the main available technological options for flue gas treatment were analyzed, focusing on dry treatment systems, which are increasingly applied in Municipal Solid Wastes (MSW) incinerators. An operational model was proposed to describe and optimize acid gas removal process. It was applied to an existing MSW incineration plant, where acid gases are neutralized in a two-stage dry treatment system. This process is based on the injection of powdered calcium hydroxide and sodium bicarbonate in reactors followed by fabric filters. HCl and SO2 conversions were expressed as a function of reactants flow rates, calculating model parameters from literature and plant data. The implementation in a software for process simulation allowed the identification of optimal operating conditions, taking into account the reactant feed rates, the amount of solid products and the recycle of the sorbent. Alternative configurations of the reference plant were also assessed. The applicability of the operational model was extended developing also a fundamental approach to the issue. A predictive model was developed, describing mass transfer and kinetic phenomena governing the acid gas neutralization with solid sorbents. The rate controlling steps were identified through the reproduction of literature data, allowing the description of acid gas removal in the case study analyzed. A laboratory device was also designed and started up to assess the required model parameters.
Resumo:
Aim of this research is the development and validation of a comprehensive multibody motorcycle model featuring rigid-ring tires, taking into account both slope and roughness of road surfaces. A novel parametrization for the general kinematics of the motorcycle is proposed, using a mixed reference-point and relative-coordinates approach. The resulting description, developed in terms of dependent coordinates, makes it possible to efficiently include rigid-ring kinematics as well as road elevation and slope. The equations of motion for the multibody system are derived symbolically and the constraint equations arising from the dependent-coordinate formulation are handled using a projection technique. Therefore the resulting system of equations can be integrated in time domain using a standard ODE algorithm. The model is validated with respect to maneuvers experimentally measured on the race track, showing consistent results and excellent computational efficiency. More in detail, it is also capable of reproducing the chatter vibration of racing motorcycles. The chatter phenomenon, appearing during high speed cornering maneuvers, consists of a self-excited vertical oscillation of both the front and rear unsprung masses in the range of frequency between 17 and 22 Hz. A critical maneuver is numerically simulated, and a self-excited vibration appears, consistent with the experimentally measured chatter vibration. Finally, the driving mechanism for the self-excitation is highlighted and a physical interpretation is proposed.
Resumo:
This thesis is focused on Smart Grid applications in medium voltage distribution networks. For the development of new applications it appears useful the availability of simulation tools able to model dynamic behavior of both the power system and the communication network. Such a co-simulation environment would allow the assessment of the feasibility of using a given network technology to support communication-based Smart Grid control schemes on an existing segment of the electrical grid and to determine the range of control schemes that different communications technologies can support. For this reason, is presented a co-simulation platform that has been built by linking the Electromagnetic Transients Program Simulator (EMTP v3.0) with a Telecommunication Network Simulator (OPNET-Riverbed v18.0). The simulator is used to design and analyze a coordinate use of Distributed Energy Resources (DERs) for the voltage/var control (VVC) in distribution network. This thesis is focused control structure based on the use of phase measurement units (PMUs). In order to limit the required reinforcements of the communication infrastructures currently adopted by Distribution Network Operators (DNOs), the study is focused on leader-less MAS schemes that do not assign special coordinating rules to specific agents. Leader-less MAS are expected to produce more uniform communication traffic than centralized approaches that include a moderator agent. Moreover, leader-less MAS are expected to be less affected by limitations and constraint of some communication links. The developed co-simulator has allowed the definition of specific countermeasures against the limitations of the communication network, with particular reference to the latency and loss and information, for both the case of wired and wireless communication networks. Moreover, the co-simulation platform has bee also coupled with a mobility simulator in order to study specific countermeasures against the negative effects on the medium voltage/current distribution network caused by the concurrent connection of electric vehicles.
Resumo:
Systems Biology is an innovative way of doing biology recently raised in bio-informatics contexts, characterised by the study of biological systems as complex systems with a strong focus on the system level and on the interaction dimension. In other words, the objective is to understand biological systems as a whole, putting on the foreground not only the study of the individual parts as standalone parts, but also of their interaction and of the global properties that emerge at the system level by means of the interaction among the parts. This thesis focuses on the adoption of multi-agent systems (MAS) as a suitable paradigm for Systems Biology, for developing models and simulation of complex biological systems. Multi-agent system have been recently introduced in informatics context as a suitabe paradigm for modelling and engineering complex systems. Roughly speaking, a MAS can be conceived as a set of autonomous and interacting entities, called agents, situated in some kind of nvironment, where they fruitfully interact and coordinate so as to obtain a coherent global system behaviour. The claim of this work is that the general properties of MAS make them an effective approach for modelling and building simulations of complex biological systems, following the methodological principles identified by Systems Biology. In particular, the thesis focuses on cell populations as biological systems. In order to support the claim, the thesis introduces and describes (i) a MAS-based model conceived for modelling the dynamics of systems of cells interacting inside cell environment called niches. (ii) a computational tool, developed for implementing the models and executing the simulations. The tool is meant to work as a kind of virtual laboratory, on top of which kinds of virtual experiments can be performed, characterised by the definition and execution of specific models implemented as MASs, so as to support the validation, falsification and improvement of the models through the observation and analysis of the simulations. A hematopoietic stem cell system is taken as reference case study for formulating a specific model and executing virtual experiments.
Resumo:
Data on oxygen isotope composition of waters from the Sea of Azov.
Resumo:
Understanding past human-climate-environment interactions is essential for assessing the vulnerability of landscapes and ecosystems to future climate change. This is particularly important in southern Morocco where the current vegetation is impacted by pastoralism, and the region is highly sensitive to climate variability. Here, we present a 2000-year record of vegetation, sedimentation rate, XRF chemical element intensities, and particle size from two decadal-resolved, marine sediment cores, raised from offshore Cape Ghir, southern Morocco. The results show that between 650 and 850 AD the sedimentation rate increased dramatically from 100 cm/1000 years to 300 cm/1000 years, and the Fe/Ca and pollen flux doubled, together indicating higher inputs of terrestrial sediment. Particle size measurements and end-member modelling suggest increased fluvial transport of the sediment. Beginning at 650 AD pollen levels from Cichorioideae species show a sharp rise from 10% to 20%. Pollen from Atemisia and Plantago, also increase from this time. Deciduous oak pollen percentages show a decline, whereas those of evergreen oak barely change. The abrupt increase in terrestrial/fluvial input from 650 to 850 AD occurs, within the age uncertainty, of the arrival of Islam (Islamisation) in Morocco at around 700 AD. Historical evidence suggests Islamisation led to population increase and development of southern Morocco, including expanded pastoralism, deforestation and agriculture. Livestock pressure may have changed the vegetation structure, accounting for the increase in pollen from Cichorioideae, Plantago, and Artemisia, which include many weedy species. Goats in particular may have played a dominant role as agents of erosion, and intense browsing may have led to the decline in deciduous oak; evergreen oak is more likely to survive as it re-sprouts more vigorously after browsing. From 850 AD to present sedimentation rates, Fe/Ca ratios and fluvial discharge remain stable, whereas pollen results suggest continued degradation. Pollen results from the past 150 years suggest expanded cultivation of olives and the native argan tree, and the introduction of Australian eucalyptus trees. The rapidly increasing population in southern Morocco is causing continued pressure to expand pastoralism and agriculture. The history of land degradation presented here suggests that the vegetation in southern Morocco may have been degraded for a longer period than previously thought and may be particularly sensitive to further land use changes. These results should be included in land management strategies for southern Morocco.