748 resultados para recognition of prior learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary questions addressed in this paper are the following: what are the factors that affect students’ adoption of an e-learning system and what are the relationships among these factors? This paper investigates and identifies some of the major factors affecting students’ adoption of an e-learning system in a university in Jordan. E-learning adoption is approached from the information systems acceptance point of view. This suggests that a prior condition for learning effectively using e-learning systems is that students must actually use them. Thus, a greater knowledge of the factors that affect IT adoption and their interrelationships is a pre-cursor to a better understanding of student acceptance of e-learning systems. In turn, this will help and guide those who develop, implement, and deliver e-learning systems. In this study, an extended version of the Technology Acceptance Model (TAM) was developed to investigate the underlying factors that influence students’ decisions to use an e-learning system. The TAM was populated using data gathered from a survey of 486 undergraduate students using the Moodle based e-learning system at the Arab Open University. The model was estimated using Structural Equation Modelling (SEM). A path model was developed to analyze the relationships between the factors to explain students’ adoption of the e-learning system. Whilst findings support existing literature about prior experience affecting perceptions, they also point to surprising group effects, which may merit future exploration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report we summarize the state-of-the-art of speech emotion recognition from the signal processing point of view. On the bases of multi-corporal experiments with machine-learning classifiers, the observation is made that existing approaches for supervised machine learning lead to database dependent classifiers which can not be applied for multi-language speech emotion recognition without additional training because they discriminate the emotion classes following the used training language. As there are experimental results showing that Humans can perform language independent categorisation, we made a parallel between machine recognition and the cognitive process and tried to discover the sources of these divergent results. The analysis suggests that the main difference is that the speech perception allows extraction of language independent features although language dependent features are incorporated in all levels of the speech signal and play as a strong discriminative function in human perception. Based on several results in related domains, we have suggested that in addition, the cognitive process of emotion-recognition is based on categorisation, assisted by some hierarchical structure of the emotional categories, existing in the cognitive space of all humans. We propose a strategy for developing language independent machine emotion recognition, related to the identification of language independent speech features and the use of additional information from visual (expression) features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research evaluates pattern recognition techniques on a subclass of big data where the dimensionality of the input space (p) is much larger than the number of observations (n). Specifically, we evaluate massive gene expression microarray cancer data where the ratio κ is less than one. We explore the statistical and computational challenges inherent in these high dimensional low sample size (HDLSS) problems and present statistical machine learning methods used to tackle and circumvent these difficulties. Regularization and kernel algorithms were explored in this research using seven datasets where κ < 1. These techniques require special attention to tuning necessitating several extensions of cross-validation to be investigated to support better predictive performance. While no single algorithm was universally the best predictor, the regularization technique produced lower test errors in five of the seven datasets studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined the motivation of college and university faculty to implement service-learning into their traditional courses. The benefits derived by faculty, as well as those issues of maintenance, including supports and/or obstacles, were also investigated in relation to their impact on motivation. The focus was on generating theory from the emerging data. ^ Data were collected from interviews with 17 faculty teaching courses that included a component of service-learning. A maximum variation sampling of participants from six South Florida colleges and universities was utilized. Faculty participants represented a wide range of academic disciplines, faculty ranks, years of experience in teaching and using service-learning as well as gender and ethnic diversity. For data triangulation, a focus group with eight additional college faculty was conducted and documents, including course syllabi and institutional service-learning handbooks, collected during the interviews were examined. The interviews were transcribed and coded using traditional methods as well as with the assistance of the computerized assisted qualitative data analysis software, Atlas.ti. The data were organized into five major categories with themes and sub-themes emerging for each. ^ While intrinsic or personal factors along with extrinsic factors all serve to influence faculty motivation, the study's findings revealed that the primary factors influencing faculty motivation to adopt service-learning were those that were intrinsic or personal in nature. These factors included: (a) past experiences, (b) personal characteristics including the value of serving, (c) involvement with community service, (d) interactions and relationships with peers, (e) benefits to students, (f) benefits to teaching, and (g) perceived career benefits. Implications and recommendations from the study encompass suggestions for administrators in higher education institutions for supporting and encouraging faculty adoption of service-learning including a well developed infrastructure as well as incentives, particularly during the initial implementation period, rewards providing recognition for the academic nature of service-learning and support for the development of peer relationships among service-learning faculty. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research in ubiquitous and pervasive technologies have made it possible to recognise activities of daily living through non-intrusive sensors. The data captured from these sensors are required to be classified using various machine learning or knowledge driven techniques to infer and recognise activities. The process of discovering the activities and activity-object patterns from the sensors tagged to objects as they are used is critical to recognising the activities. In this paper, we propose a topic model process of discovering activities and activity-object patterns from the interactions of low level state-change sensors. We also develop a recognition and segmentation algorithm to recognise activities and recognise activity boundaries. Experimental results we present validates our framework and shows it is comparable to existing approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the effectiveness of virtual product placement as a marketing tool by examining the relationship between brand recall and recognition and virtual product placement. It also aims to address a gap in the existing academic literature by focusing on the impact of product placement on recall and recognition of new brands. The growing importance of product placement is discussed and a review of previous research on product placement and virtual product placement is provided. The research methodology used to study the recall and recognition effects of virtual product placement are described and key findings presented. Finally, implications are discussed and recommendations for future research provided.