973 resultados para reciprocal chromosome translocation
Resumo:
Both obesity and being underweight have been associated with increased mortality. Underweight, defined as a body mass index (BMI) ≤ 18.5 kg per m(2) in adults and ≤ -2 standard deviations from the mean in children, is the main sign of a series of heterogeneous clinical conditions including failure to thrive, feeding and eating disorder and/or anorexia nervosa. In contrast to obesity, few genetic variants underlying these clinical conditions have been reported. We previously showed that hemizygosity of a ∼600-kilobase (kb) region on the short arm of chromosome 16 causes a highly penetrant form of obesity that is often associated with hyperphagia and intellectual disabilities. Here we show that the corresponding reciprocal duplication is associated with being underweight. We identified 138 duplication carriers (including 132 novel cases and 108 unrelated carriers) from individuals clinically referred for developmental or intellectual disabilities (DD/ID) or psychiatric disorders, or recruited from population-based cohorts. These carriers show significantly reduced postnatal weight and BMI. Half of the boys younger than five years are underweight with a probable diagnosis of failure to thrive, whereas adult duplication carriers have an 8.3-fold increased risk of being clinically underweight. We observe a trend towards increased severity in males, as well as a depletion of male carriers among non-medically ascertained cases. These features are associated with an unusually high frequency of selective and restrictive eating behaviours and a significant reduction in head circumference. Each of the observed phenotypes is the converse of one reported in carriers of deletions at this locus. The phenotypes correlate with changes in transcript levels for genes mapping within the duplication but not in flanking regions. The reciprocal impact of these 16p11.2 copy-number variants indicates that severe obesity and being underweight could have mirror aetiologies, possibly through contrasting effects on energy balance.
Resumo:
Human telomeres play a major role in stabilizing chromosome ends and preventing fusions. Chromosomes bearing a broken end are rescued by the acquisition of a new telomeric cap without any subtelomeric sequences being present at the breakpoint, a process referred to as chromosome healing. Conversely, a loss of telomeric function or integrity can lead to the presence of interstitial telomeres at the junction site in translocations or ring chromosomes. In order to determine the frequency at which interstitial telomeres or chromosome healing events are observed in target chromosome abnormalities, we conducted a retrospective FISH study using pan-telomeric and chromosome-specific subtelomeric probes on archival material from 40 cases of terminal deletions, translocations or ring chromosomes. Of the 19 terminal deletions investigated, 17 were negative for the subtelomeric probe specific to the deleted arm despite being positive for the pan-telomeric probe. These 17 cases were thus considered as been rescued through chromosome healing, suggesting that this process is frequent in terminal deletions. In addition, as two of these cases were inherited from a parent bearing the same deletion, chromosomes healed by this process are thus stable through mitosis and meiosis. Regarding the 13 cases of translocations and eight ring chromosomes, four and two cases respectively demonstrated pan-telomeric sequences at the interstitial junction point. Furthermore, two cases of translocations and one ring chromosome had both interstitial pan-telomeres and subtelomeres, whereas two other cases of ring chromosomes and one case of translocation only showed interstitial subtelomeres. Therefore, interstitial (sub)telomeric sequences in translocations and ring chromosomes are more common than previously thought, as we found a frequency of 43% in this study. Moreover, our results illustrate the necessity of performing FISH with both subtelomeric and pan-telomeric probes when investigating these rearrangements, as the breakpoints can be either in the distal part of the pan-telomeres, or in between the two types of sequences.
Resumo:
Le développement sexuel est un processus complexe qui dépend de nombreux gènes, une mutation pouvant entraîner un développement sexuel anormal. Par ailleurs, des anomalies chromosomiques peuvent avoir des répercussions importantes sur la détermination gonadique, surtout lorsqu'il s'agit du chromosome Y puisqu'il porte le gène clé du développement sexuel masculin. Premièrement, nous avons identifié par cytogénétique moléculaire le point de cassure chez 5 patients avec une translocation X;Y et 10 patients avec un chromosome Y isodicentrique. Nous avons ainsi démontré que certaines régions sont plus à risque d'être remaniées, notamment lorsqu'elles contiennent des palindromes ou d'autres séquences répétées. Nous avons également établi une relation entre la distance séparant le centromère et le point de cassure et l'instabilité des chromosomes Y isodicentriques lors des divisions cellulaires. Deuxièmement, nous avons étudié en cytogénétique les gonades de 22 patients avec un chromosome Y normal ou remanié et présentant un développement sexuel anormal. Nous avons mis en évidence la perte du chromosome Y remanié dans une majorité de cellules gonadiques des 10 patients étudiés, expliquant leur phénotype sexuel anormal. Cependant, chez 11 des 12 patients avec un chromosome Y normal, aucun mosaïcisme expliquant clairement leur détermination gonadique anormale n'a été retrouvé. Finalement, nous avons analysé par immunohistochimie les gonades dysgénésiques de 30 patients avec une anomalie du développement sexuel et un chromosome Y normal ou remanié. Nos travaux ont montré la présence de cellules germinales immatures au sein de cordons sexuels primitifs sous forme de tissu gonadique indifférencié dans 15 gonades, dont 9 ont évolué en tumeur gonadique. Dans 13 autres gonades, ces cellules germinales immatures avaient disparues par apoptose. Dans l'ensemble, notre recherche met en évidence la susceptibilité du chromosome Y à subir des remaniements et à être instable lors des divisions cellulaires, et indique que le mosaïcisme peut avoir des répercussions sur la détermination gonadique. Nos travaux montrent également que le tissu gonadique indifférencié peut évoluer vers deux entités, une tumeur gonadique ou une bandelette suite à l'apoptose des cellules germinales, mettant en lumière la nécessité d'analyser le tissu gonadique des patients XY avec dysgénésie gonadique dont les gonades sont laissées en place.
Resumo:
Supernumerary marker chromosomes (sSMC) may or may not be associated with an abnormal phenotype, depending on the presence of euchromatin, on their chromosomal origin and whether they are inherited. Over 80% of sSMCs are derived from acrocentric chromosomes and half of them include the short arm of chromosome 15. Generally, they appear as bisatellited isodicentric marker chromosomes, most of them are symmetric. These chromosomes are normally originated de novo and are associated with mild to severe intellectual disability but not with physical abnormalities. We report on a patient with an SMC studied using classical and molecular cytogenetic procedures (G and C banding, NOR staining, painting and centromeric fluorescent in situ hybridization (FISH), BAC-FISH, and SKY). The MLPA technique and DNA polymorphic markers were used in order to identify its parental origin. The marker chromosome, monosatellited and monocentric, was found to be derived from a maternal chromosome 15 and was defined as 15pter-q21.2. This is the report of the largest de novo monosatellited 15q marker chromosome ever published presenting detailed cytogenetic and clinical data. It was associated with a phenotype including cardiac defect, absence of septum pellucidum, and dysplasia of the corpus callosum. (C) 2010 Wiley-Liss, Inc.
Resumo:
The order Scorpiones is one of the most cytogenetically interesting groups within Arachnida by virtue of the combination of chromosome singularities found in the 59 species analyzed so far. In this work, mitotic and meiotic chromosomes of 2 species of the family Bothriuridae were detailed. This family occupies a basal position within the superfamily Scorpionoidea. Furthermore, review of the cytogenetic data of all previously studied scorpions is presented. Light microscopy chromosome analysis showed that Bothriurus araguayae and Bothriurus rochensis possess low diploid numbers compared with those of species belonging to closely related families. Gonadal cells examined under light and in transmission electron microscopy revealed, for the first time, that the Bothriuridae species possess typical monocentric chromosomes, and male meiosis presented chromosomes with synaptic and achiasmatic behavior. Moreover, in the sample of B. araguayae studied, heterozygous translocations were verified. The use of techniques to highlight specific chromosomal regions also revealed additional differences between the 2 Bothriurus species. The results herein recorded and the overview elaborated using the available cytogenetic information of Scorpiones elucidated current understanding regarding the processes of chromosome evolution that have occurred in Bothriuridae and in Scorpiones as a whole.
Resumo:
Chromosomes of a species of Eigenmannia presenting a X1X1X2X2:X1X2Y sex chromosome system, resulting from a Y-autosome Robertsonian translocation, were analyzed using the C-banding technique, chromomycin A(3) (CMA(3)) and mithramycin (MM) staining and in situ digestion by the restriction endonuclease AluI. A comparison of the metacentric Y chromosome of males with the corresponding acrocentrics in females indicated that a C-band-positive, CMA(3)/MM-fluorescent and AluI digestion-resistant region had been lost during the process of translocation, resulting in a diminution of heterochromatin in the males. It is hypothesized that the presence of a smaller amount of G+C-rich heterochromatin in the sex chromosomes of the heteromorphic sex when compared with the homomorphic sex may be associated with the sex determination mechanism in this species and may be a more widely occurring phenomenon in fish with differentiated sex chromosomes than was initially thought.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A novel association of t(11;19)(q23;p13) and t(5;16)(q13;q22) was detected by G-banding and spectral karyotyping studies in an 18-year-old patient. While balanced t(11; 19) has been often described in acute myelocytic leukemia (AML) French-American-British Cooperative Group subtypes M4 and M5, this patient was diagnosed with the variant AML-M4 with eosinophilia (AML-M4Eo), which is associated with abnormalities in 16q22 and has good prognosis. However, the patient relapsed after allogeneic transplant and died within 2 years of diagnosis, which suggests that the association of these two translocations correlates with a poor prognosis. This report expands the molecular basis of the variability in clinical outcomes and adds the novel t(5;16)(q13;q22) to the spectrum of chromosome 16q22 abnormalities in AML. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We describe a case of X monosomy associated with a maternally inherited t(13;14) Robertsonian translocation in a girl with Turner syndrome. The girl's X chromosome was demonstrated to be maternally inherited, ruling out the hypothesis that the translocation exerted an interchromosomal effect on the origin of the monosomy. Chromosomes 13 and 14 showed biparental inheritance.
Resumo:
Drosophila serido is considered to be a superspecies consisting of two species: D. serido, from Brazil and D. koepferae from Argentina and Bolivia. However this probably does not express the entire evolutionary complexity of its populations. Isofemale lines A95F3 (from Brazil) and B20D2 (from Argentina), at present representing, respectively, the first and second species, were analyzed for fertility and fecundity in pair-mating intracrosses and intercrosses, as well as for development time, banding patterns and asynapsis of polytene chromosomes in the isofemale lines and their hybrids.Although variations in experimental conditions resulted in some variability in the results, in general A95F3 fertility and fecundity were lower than in B20D2. Intercrosses of A95F3 females and B20D2 males showed lower fertility and fecundity than the reciprocal crosses, following more closely characteristics of the mother strains. This is in contrast to the results obtained by Fontdevilla et al. (An. Entomol. Soc. Amer. 81: 380-385, 1988) and may be due to the different geographic origin of D. serido strains they used in crosses to B20D2. This difference and others cited in the literature relative to aedeagus morphology, karyotype characteristics, inversion polymorphisms and reproductive isolation strongly indicate that A95F3 and D. serido from the State of Bahia, Brazil are not a single evolutionary entity, reinforcing the idea of greater complexity of the superspecies D. serido than is known today.The reproductive isolation mechanisms found operating between A95F3 and B20D2 were prezygotic and postzygotic, the latter included mortality at the larvae stage in both directions of crosses and sterility of male hybrids in intercrosses involving B20D2 females and A95F3 males. The two isofemale lines differed in egg-adult development time, which was also differently affected by culture medium composition.A95F3 and B20D2 also showed differences in the banding patterns of proximal regions of polytene chromosomes 2, 3 and X, a fixed inversion in chromosome 3 (here named 3t), apparently not described previously, and a high degree of asynapsis in hybrids.These observations, especially those related to reproductive isolation and chromosomal differentiation (including the karyotype, previously described, and the differentiation of banding patterns, described in this paper), as well as the extensive asynapsis observed in hybrids reinforces the distinct species status of A95F3 and B20D2 isofemale lines.
Resumo:
Synaptonemal complexes were analysed by electron microscopy in 2 bucks heterozygous for the 5/15 Robertsonian translocation. The cis configuration (free homologous 5 and 15 chromosomes on the same side of the 5/15 translocated chromosome) was found in all 50 cells examined. This feature is considered a prerequisite for the development of balanced gametes. No association between the sex bivalent and trivalent was observed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In a group of 12 Pitangueiras breed heifers exhibiting a high return rate to service, three were noted to be carriers of the 1 29 translocation. One of the heifers exhibited trisomy for the X-chromosome in addition to the 1 29 translocation. The appearance and external genitalia of the 1 29 T; trisomy X heifer were not altered, although on rectal examination the internal genitalia, including the ovaries, appeared similar to that of a prepubertal heifer. © 1987.
Resumo:
The karyotypes of 15 species of Termitidae were analyzed. All of them are X1X2Y1Y2 (male) and X1X1X2X2 (female). With the exception of Neocapritermes opacus with 2n=40, the remaining species are 2n=42 in both sexes, a karyotype similar to those described for African species by other authors. The sex determining mechanism probably originated before the split up of Gondwanaland, in a single event, early during the karyotype evolution of the family Termitidae by means of a reciprocal translocation that involved the primitive Y and a chromosome from an autosomal pair.