954 resultados para receptors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In classical fear conditioning a neutral conditioned stimulus (CS), is paired with an aversive unconditioned stimulus (US). The CS thereby acquires the capacity to elicit a fear response. This type of associative learning is thought to require co-activation of principal neurons in the lateral nucleus of the amygdala (LA) by two sets of synaptic inputs...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In classical fear conditioning a neutral conditioned stimulus (CS) such as a tone, is paired with an aversive unconditioned stimulus (US) such as a shock. The CS thereby acquires the capacity to elicit a fear response. This type of associative learning is thought to require co-activation of principle neurons in the lateral nucleus of the amygdala (LA) by two sets of synaptic inputs, a weak CS and a strong US...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is strong evidence to suggest that the combination of alcohol and chronic repetitive stress leads to long-lasting effects on brain function, specifically areas associated with stress, motivation and decision-making such as the amygdala, nucleus accumbens and prefrontal cortex. Alcohol and stress together facilitate the imprinting of long-lasting memories. The molecular mechanisms and circuits involved are being studied but are not fully understood. Current evidence suggests that corticosterone (animals) or cortisol (humans), in addition to direct transcriptional effects on the genome, can directly regulate pre- and postsynaptic synaptic transmission through membrane bound glucocorticoid receptors (GR). Indeed, corticosterone-sensitive synaptic receptors may be critical sites for stress regulation of synaptic responses. Direct modulation of synaptic transmission by corticosterone may contribute to the regulation of synaptic plasticity and memory during stress (Johnson et al., 2005; Prager et al., 2010). Specifically, previous data has shown that long term alcohol (1) increases the expression of NR2Bcontaining NMDA receptors at glutamate synapses, (2) changes receptor density, and (3) changes morphology of dendritic spines (Prendergast and Mulholland; 2012). During alcohol withdrawal these changes are associated with increased glucocorticoid signalling and increased neuronal excitability. It has therefore been proposed that these synapse changes lead to the anxiety and alcohol craving associated with withdrawal (Prendergast and Mulholland; 2012). My lab is targeting this receptor system and the amygdala in order to understand the effect of combining alcohol and stress on these pathways. Lastly, we are testing GR specific compounds as potential new medications to promote the development of resilience to developing addiction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress is a major driving force in alcohol use disorders (AUDs). It influences how much one consumes, craving intensity and whether an abstinent individual will return to harmful alcohol consumption. We are most vulnerable to the effects of stress during early development, and exposure to multiple traumatic early life events dramatically increases the risk for AUDs. However, not everyone exposed to early life stress will develop an AUD. The mechanisms determining whether an individual’s brain adapts and becomes resilient to the effects of stress or succumbs and is unable to cope with stress remain elusive. Emerging evidence suggests that neuroplastic changes in the nucleus accumbens (NAc) following early life stress underlie the development of AUDs. This review discusses the impact of early life stress on NAc structure and function, how these changes affect cholinergic signaling within the mesolimbic reward pathway and the role nicotinic acetylcholine receptors (nAChRs) play in this process. Understanding the neural pathways and mechanism determining stress resilience or susceptibility will improve our ability to identify individuals susceptible to developing AUDs, formulate cognitive interventions to prevent AUDs in susceptible individuals and to elucidate and enhance potential therapeutic targets, such as the nAChRs, for those struggling to overcome an AUD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ontogeny of muscarinic receptors was studied in human fetal striatum, brainstem, and cerebellum to investigate general principles of synaptogenesis as well as the physiological balance between various chemical synapses during development in a given region of the brain. [3H]Quinuclidinyl benzilate ([-'H]QNB) binding was assayed in total particulate fraction (TPF) from various parts of brain. In the corpus striatum, QNB binding sites are present at 16 weeks of gestation (average concentration 180 fmol/mg protein of TPF), slowly increase up to 24 weeks (average concentration 217 fmol/mg protein), and rapidly increase during the third trimester to 480 fmol/mg protein of TPF. In contrast, dopaminergic receptors exist as two subpopulations. one with low affinity and the other with high affinity up to the 24th week of gestation; all of them acquire the highaffinity characteristic during the third trimester. In brainstem, the muscarinic receptors show maximum concentration by 16 weeks of age (360 fmolimg protein of TPF). Subsequently the muscarinic receptor concentration shows a gradual decline in the brainstem. In cerebellum, except for a slight increase at 24 weeks (average concentration 90 fmol/mg protein of TPF), the receptor concentration remained nearly constant at about 60-70 fmolimg protein of TPF throughout fetal life. This study demonstrates that the ontogeny of muscarinic receptors varies among the different regions, and the patterns observed suggest that receptor formation occurs principally in the third trimester. Also noteworthy is the finding that the QNB binding sites decreased in all regions of the human brain during adult life. Key Words: Cholinergic muscarinic receptors-Quinuclidinyl benzilate-Corpus striaturn-Brainstem-Cerebellum. Ravikumar B. V. and Sastry P. S. Cholinergic muscarinic receptors in human fetal brain: Ontogeny of [3H]quinuclidinyl benzilate binding sites in corpus striatum, brainstem, and cerebellum. J. Neurochem. 45, 1948- 1950 (1985).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induction of follicle stimulating hormone receptor in the granulosa cells of intact immature rat ovary by diethylstilbesterol, an estrogen, has been studied. A single injection of 4 mg of diethylstilbesterol produced 72 h later a 3-fold increase in follicle stimulating hormone receptor concentration as monitored by [125I]-oFSH binding to isolated cells. The newly induced receptors were kinetically indistinguishable from the preexisting ones, as determined by Lineweaver-Burk plot of the binding data. The induced receptors were functional as evidenced by increased ability of the granulosa cells to incorporate [3H]-leucine into cellular proteins. Neutralization of endogenous follicle stimulating hormone and luteinizing hormone by administering specific antisera had no effect on the ability of diethylstilbesterol to induce follicle stimulating hormone receptors, whereas blockade of endogenous prolactin secretion by ergobromocryptin administration significantly inhibited (∼ 30 %) the response to diethylstilbesterol; this inhibition could be completely relieved by ovine prolactin treatment. However, ovine prolactin at the dose tried did not by itself enhance follicle stimulating hormone receptor level. Administration of ergobromocryptin to adult cycling rats at noon of proestrus brought about as measured on diestrusII, (a) a reduction of both follicle stimulating hormone (∼ 30 %) and luteinizing hormone (∼ 45 %) receptor concentration in granulosa cells, (b) a drastic reduction in the ovarian tissue estradiol with no change in tissue progesterone and (c) reduction in the ability of isolated granulosa cells to convert testosterone to estradiol in response to follicle stimulating hormone. Ergobromocryptin treatment affected only prolactin and not follicle stimulating hormone or luteinizing hormone surges on the proestrus evening. Treatment of rats with ergobromocryptin at proestrus noon followed by an injection of ovine prolactin (1 mg) at 1700 h of the same day completely reversed the ergobromocryptin induced reduction in ovarian tissue estradiol as well as the aromatase activity of the granulosa cells on diestrus II, thus suggesting a role for proestrus prolactin surge in the follicular maturation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cigarette smoking is, in developed countries, the leading cause of premature death. In tobacco smoke, the main addictive compound is nicotine, which in the brain binds to neuronal nicotinic acetylcholine receptors (neuronal nAChRs). These have been implicated in addiction, but also in several neurological disorders including Alzheimer's and Parkinson's diseases, Tourette's syndrome, attention-deficit hyperactivity disorder (ADHD), schizophrenia, pain, depression, and autosomal-dominant noctural frontal lobe epilepsy; all of which makes nAChRs an intriguing target of study. Chronic treatment with nicotine leads to an increase in the number of nAChRs (upregulation) in the brain and changes their functionality. Changes in the properties of nAChRs are likely to occur in smokers as well, since they are exposed to nicotine for long periods of time. Several nAChR subtypes likely play a role in the formation of nicotine addiction by participating in the release of dopamine in the striatum. The aim of this study was to clarify at cellular level the changes in nAChR characteristics resulting from chronic nicotine treatment. SH-SY5Y cells, endogenously several nAChR-expressing, and SH-EP1-h-alfa7 cells, transfected with the alfa 7 nAChR subunit gene were treated chronically with nicotine. The localisation of alfa 7 and beta2 subunits was studied with confocal and electron microscopy. Functionality of nAChRs was studied with calcium fluorometry. Effects of long-term treatment with opioid compounds on nAChRs were studied by means of ligand binding. Confocal microscopy showed that in SH-SY5Y cells, alfa7 and beta2 subunits formed clusters, unlike the case in SH-EP1-h alfa7 cells, where alfa7 nAChRs were distributed more diffusely. The majority of nAChR subunits localised on endoplasmic reticulum (ER). The isomers of methadone acted as agonists at alfa7 nAChRs. Acute morphine challenge also stimulated nAChRs. Chronic treatment with methadone or morphine led to an increased number of nAChRs. In animal studies, mice received nicotine for 7 weeks. Electron microscopical analysis of the localisation of nAChRs showed in the striatum that alfa7 and beta2 nAChR subunits localised synaptically, extrasynaptically, and intracellularly, with the majority localising extrasynaptically. Chronic nicotine treatment caused an increase in the number of nAChR subunits at all studied locations. These results suggest that the alfa7 nAChR and beta2 subunit-containing nAChRs respond to chronic nicotine treatment differently. This may indicate that the functional balance of various nAChR subtypes in control of the release of dopamine is altered as a result of chronic nicotine treatment. Compounds binding both to opioid and nACh receptors may be of clinical importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nicotine, the addictive compound of tobacco products, exerts its effects in the brain by binding to neuronal acetylcholine nicotinic receptors (nAChRs). The aim of the present study was to increase the knowledge of nicotine s complex effects, the focus being on homomeric alpha7-nAChRs that are widely expressed in the brain. Nicotinic regulation of differential signalling molecules including transcriptional regulators was also studied. We found that the number of alpha7-nAChRs is increased in specific brain regions in mice, in a time-dependent manner after chronic oral nicotine administration. Our results suggest that in addition to alpha4beta2-nAChRs, the other major nAChR subtype expressed in the brain, the number of alpha7-nAChRs is affected by chronic presence of nicotine. We suggest that when studying the long-term effects of nicotine, the duration on administration is of great importance. Next, we observed that nicotine exposure induces accumulation of cAMP in cell cultures expressing nAChRs. Furthermore, nicotine-induced alpha7-nAChR upregulation was potentiated by treatments enhancing cAMP-signalling, suggesting a role for cAMP in the upregulation process. Protein kinase C (PKC) was found essential for the basal regulation of alpha7-nAChR number. The nicotine-evoked alpha7-nAChR upregulation could be further increased by PKC overexpression. Thirdly, the effects of nicotine on dopamine and cAMP regulated phosphoprotein (DARPP-32) were characterised in rat brain. The results show that DARPP-32 is regulated by both acute and long-term nicotine treatment in the striatal subdivisions. The effect of acute nicotine is dose-dependent and the three striatal regions display differential sensitivities to nicotine. Chronic nicotine is also able to regulate DARPP-32 signalling with prominent effect seen in the nucleus accumbens (NAc), suggesting a role for DARPP-32 in the mediation of long-term effects of nicotine. Finally, the regulation of transcription factors Elk-1 and FosB/deltaFosB by nicotine was investigated. We found that Elk-1 is activated by acute nicotine selectively in the NAc core and hippocampal area CA1, whereas acute nicotine does not affect FosB/deltaFosB. Long-term intermittent or continuous nicotine increases the level of total Elk-1 in the same brain regions as acute nicotine. FosB/deltaFosB is also affected by chronic nicotine. Thus, similarly to other drugs of abuse, nicotine regulates transcriptional regulators Elk-1 and FosB/deltaFosB. These results bring further support for a common mechanism underlying the development of addiction. Nicotine s positive effects on learning and memory might involve the transcription factor Elk-1 based on the changes seen in the hippocampus, the key area in cognitive functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antisera (a/s) raised to individual α- and β-subunits of human chorionic gonadotropin (hCG) have been characterized for specificity using immunoaffinity procedures and used to study the disposition of the two subunits when intact hCG is complexed with luteinizing hormone (LH) receptor of the Leydig cells. Three kinds of experiments were done. (a) The ability of the preformed hormone-antibody (H-Ab) complex to bind to receptor and stimulate a response; (b) the ability of the a/s to dissociate hCG from its complex with the receptor and thereby terminate response; and (c) the ability of the premixed antibody and receptor to compete for binding of labeled hCG. Although the subunit specific a/s used here were equipotent in binding hCG (capacity to bind and Ka being very similar), their behavior once the receptor preparation or Leydig cell is introduced into the system was drastically different. The β-subunit antibody relative to the α-subunit antibody, appeared to be poorly effective in preventing hCG from either binding to the receptor or inhibiting the continuation of response. The results suggest that hCG upon interaction with the receptor loses the determinants specific to the β-region more rapidly compared to those specific to the α-region suggesting thereby that the initial interaction of hCG with the receptor should be occurring through sites in the β-subunit. Although the α-subunit portion of the hCG molecule is available for binding to the antibody for a relatively longer time, the biological response of the cell seems very sensitive to such binding with the antibody as it invariably results in loss of response. In the Leydig cell system, the ability of the a/s to bind hCG that is already complexed to the receptor appears to be dependent upon the time of addition of the antibody to the incubation medium. The antisera were totally ineffective in inhibiting steroidogenic response to hCG if added 60 min after addition of hCG. This would suggest that the hormone-receptor complex once formed perhaps continues to change its orientation with the result that with time relatively less and less of antigenic determinants become available for antibody binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative induction of FSH and LH receptors in the granulosa cells of immature rat ovary by pregnant mare serum gonadotropin (PMSG) has been studied. A single injection of PMSG (15 IU) brought about a 3- and 12-fold increase in FSH and LH receptor concentration,respectively, in the granulosa cells. Maximal concentration was reached by 72 h but the receptor levels showed a sharp decline during the next 24–48 h. The kinetic properties of the newly formed FSH receptors were indistinguishable from the pre-existing ones. The induced FSH receptors were functional as demonstrated by an increase in the in vitro responsiveness of the cells to exogenous FSH in terms of progesterone production. Treatment of immature rats with cyanoketone, an inhibitor of Δ5,3β-hydroxysteroid dehydrogenase, prior to PMSG injection effectively reduced the PMSG-stimulated increase in the serum estradiol, uterine weight and LH receptors but had no effect on the FSH receptor induction. The ability of PMSG to induce gonadotropin receptors can be arrested at any given time by injecting its antibody, thereby suggesting a continuous need for the hormonal inducer. Estrogen in the absence of the primary inducer was unable to maintain the induced LH and FSH receptor concentration. Inhibition of prostaglandin synthesis using indomethacin also had no effect on either the induction or degradation of gonadotropin receptors. Administration of PMSG antiserum, 48 h after PMSG injection, brought about a rapid decline in the induced receptors over the next 24 h, with a rate constant and \iota 1/2 of 0.078 h−1 and 8.9 h for FSH receptors and 0.086 h−1 and 8.0 h for the LH receptors, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear hormone receptors, such as the ecdysone receptor, often display a large amount of induced fit to ligands. The size and shape of the binding pocket in the EcR subunit changes markedly on ligand binding, making modelling methods such as docking extremely challenging. It is, however, possible to generate excellent 3D QSAR models for a given type of ligand, suggesting that the receptor adopts a relatively restricted number of binding site configurations or [`]attractors'. We describe the synthesis, in vitro binding and selected in vivo toxicity data for [gamma]-methylene [gamma]-lactams, a new class of high-affinity ligands for ecdysone receptors from Bovicola ovis (Phthiraptera) and Lucilia cuprina (Diptera). The results of a 3D QSAR study of the binding of methylene lactams to recombinant ecdysone receptor protein suggest that this class of ligands is indeed recognized by a single conformation of the EcR binding pocket.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the nervous system and acts via three distinct receptor classes: A, B, and C. GABAC receptors are ionotropic receptors comprising ρ subunits. In this work, we aimed to elucidate the expression of ρ subunits in the postnatal brain, the characteristics of ρ2 homo-oligomeric receptors, and the function of GABAC receptors in the hippocampus. In situ hybridization on rat brain slices showed ρ2 mRNA expression from the newborn in the superficial grey layer of the superior colliculus, from the first postnatal week in the hippocampal CA1 region and the pretectal nucleus of the optic tract, and in the adult dorsal lateral geniculate nucleus. Quantitative RT-PCR revealed expression of all three ρ subunits in the hippocampus and superior colliculus from the first postnatal day. In the hippocampus, ρ2 mRNA expression clearly dominated over ρ1 and ρ3. GABAC receptor protein expression was confirmed in the adult hippocampus, superior colliculus, and dorsal lateral geniculate nucleus by immunohistochemistry. From the selective distribution of ρ subunits, GABAC receptors may be hypothesized to be specifically involved in aspects of visual image motion processing in the rat brain. Although previous data had indicated a much higher expression level for ρ2 subunit transcripts than for ρ1 or ρ3 in the brain, previous work done on Xenopus oocytes had suggested that rat ρ2 subunits do not form functional homo-oligomeric GABAC receptors but need ρ1 or ρ3 subunits to form hetero-oligomers. Our results demonstrated, for the first time, that HEK 293 cells transfected with ρ2 cDNA displayed currents in whole-cell patch-clamp recordings. Homomeric rat ρ2 receptors had a decreased sensitivity to, but a high affinity for picrotoxin and a marked sensitivity to the GABAC receptor agonist CACA. Our results suggest that ρ2 subunits may contribute to brain function, also in areas not expressing other ρ subunits. Using extracellular electrophysiological recordings, we aimed to study the effects of the GABAC receptor agonists and antagonists on responses of the hippocampal neurons to electrical stimulation. Activation of GABAC receptors with CACA suppressed postsynaptic excitability and the GABAC receptor antagonist TPMPA inhibited the effects of CACA. Next, we aimed to display the activation of the GABAC receptors by synaptically released GABA using intracellular recordings. GABA-mediated long-lasting depolarizing responses evoked by high-frequency stimulation were prolonged by TPMPA. For weaker stimulation, the effect of TPMPA was enhanced after GABA uptake was inhibited. Our data demonstrate that GABAC receptors can be activated by endogenous synaptic transmitter release following strong stimulation or under conditions of reduced GABA uptake. The lack of GABAC receptor activation by less intensive stimulation under control conditions suggests that these receptors are extrasynaptic and activated via spillover of synaptically released GABA. Taken together with the restricted expression pattern of GABAC receptors in the brain and their distinctive pharmacological and biophysical properties, our findings supporting extrasynaptic localization of these receptors raise interesting possibilities for novel pharmacological therapies in the treatment of, for example, epilepsy and sleep disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AMPA receptors are an important class of ionotropic glutamate receptors which participate in fast excitatory synaptic transmission in most brain areas. They have a pivotal role in adjustment of cell membrane excitability as their cell membrane expression levels is altered in brain physiology such as in learning and memory formation. AMPA receptor function and trafficking is regulated by several proteins, such as transmembrane AMPA receptor regulatory proteins (TARPs). NMDA-type glutamate receptors are important target molecules of ethanol. The role of AMPA receptors in the actions of ethanol has not been clarified as thoroughly. Furthermore, the regulation of AMPA receptor synthesis and their possible adaptation in neurons with altered inhibitory mechanisms are poorly understood. In this thesis work AMPA receptor pharmacology, trafficking and synaptic localization was studied using patch-clamp electrophysiology. Both native and recombinant AMPA receptors were studied. Hippocampal slices from transgenic Thy1alfa6 mice with altered inhibition were used to study adaptation of AMPA receptors. Ethanol was found to inhibit AMPA receptor function by increasing desensitization of the receptor, as the steady-state current was inhibited more than the peak current. Ethanol inhibition was reduced when cyclothiazide was used to block desensitization and when non-desensitizing mutant receptors were studied. Ethanol also increased the rate of desensitization, which was increased further by the coexpression of TARP-proteins. We found that the agonist binding capability is important for trafficking AMPA receptors from endoplasmic reticulum to the cell membrane. TARP rescues the surface expression of non-binding AMPA receptor mutants in HEK293 cells, but not in native neurons. Studies with Thy1alfa6 mice revealed that decreased inhibition decrease AMPA receptor mediated excitation keeping the neurotransmission in balance. Thy1alfa6 mice also had lower sensitivity to electroshock convulsions, presumably due to the decreased AMPA receptor function. The results suggest that during alcohol intoxication ethanol may inhibit AMPA receptors by increasing the rate and the extent of desensitization. TARPs appear to enhance ethanol inhibition. TARPs also participate in trafficking of AMPA receptors upon their synthesis in the cell. AMPA receptors mediate also long-term adaptation to altered neuronal excitability, which adds to their well-known role in synaptic plasticity.