865 resultados para real interest rate, marginal product of capital, IS curve.
Resumo:
In a context where over-indebtedness and financial exclusion have been recognised as problems in Australia, it is undesirable that those who can least afford it, pay a high cost for short-term consumer credit. Evidence points to an increase in consumer debt in Australia and consequential over-indebtedness which has been shown to lead to a wide range of social problems.2 There is also evidence of financial exclusion, where consumers suffer a lack of access to mainstream financial services, and in Australia this is particularly the case with regard to access to safe and affordable credit.3 Financial exclusion can only exacerbate over-indebtedness, given that financially excluded, predominantly low income consumers , have been shown to turn to high cost credit to meet their short term credit needs. This is a problem that has been explored most recently in the Victorian Consumer Credit Review...
Resumo:
Learning is most effective when intrinsically motivated through personal interest, and situated in a supportive socio-cultural context. This paper reports on findings from a study that explored implications for design of interactive learning environments through 18 months of ethnographic observations of people’s interactions at “Hack The Evening” (HTE). HTE is a meetup group initiated at the State Library of Queensland in Brisbane, Australia, and dedicated to provide visitors with opportunities for connected learning in relation to hacking, making and do-it-yourself technology. The results provide insights into factors that contributed to HTE as a social, interactive and participatory environment for learning – knowledge is created and co-created through uncoordinated interactions among participants that come from a diversity of backgrounds, skills and areas of expertise. The insights also reveal challenges and barriers that the HTE group faced in regards to connected learning. Four dimensions of design opportunities are presented to overcome those challenges and barriers towards improving connected learning in library buildings and other free-choice learning environments that seek to embody a more interactive and participatory culture among their users. The insights are relevant for librarians as well as designers, managers and decision makers of other interactive and free-choice learning environments.
Resumo:
The nucleotide sequence of DNA complementary to rice ragged stunt oryzavirus (RRSV) genome segment 8 (S8) of an isolate from Thailand was determined. RRSV S8 is 1 914 bp in size and contains a single large open reading frame (ORF) spanning nucleotides 23 to 1 810 which is capable of encoding a protein of M(r) 67 348. The N-terminal amino acid sequence of a ~43K virion polypeptide matched to that inferred for an internal region of the S8 coding sequence. These data suggest that the 43K protein is encoded by S8 and is derived by a proteolytic cleavage. Predicted polypeptide sizes from this possible cleavage of S8 protein are 26K and 42K. Polyclonal antibodies raised against a maltose binding protein (MBP)-S8 fusion polypeptide (expressed in Escherichia coli) recognised four RRSV particle associated polypeptides of M(r) 67K, 46K, 43K and 26K and all except the 26K polypeptide were also highly immunoreactive to polyclonal antibodies raised against purified RRSV particles. Cleavage of the MBP-S8 fusion polypeptide with protease Factor X produced the expected 40K MBP and two polypeptides of apparent M(r) 46K and 26K. Antibodies to purified RRSV particles reacted strongly with the intact fusion protein and the 46K cleavage product but weakly to the 26K product. Furthermore, in vitro transcription and translation of the S8 coding region revealed a post-translational self cleavage of the 67K polypeptide to 46K and 26K products. These data indicate that S8 encodes a structural polypeptide, the majority of which is auto- catalytically cleaved to 26K and 46K proteins. The data also suggest that the 26K protein is the self cleaving protease and that the 46K product is further processed or undergoes stable conformational changes to a ~43K major capsid protein.
Resumo:
Novel nanostructures such as vertically aligned carbon nanotube (CNT) arrays have received increasing interest as drug delivery carriers. In the present study, two CNT arrays with extreme surface wettabilities are fabricated and their effects on the release of recombinant human bone morphogenetic protein-2 (rhBMP-2) are investigated. It is found that the superhydrophilic arrays retained a larger amount of rhBMP-2 than the superhydrophobic ones. Further use of a poloxamer diffusion layer delayed the initial burst and resulted in a greater total amount of rhBMP-2 released from both surfaces. In addition, rhBMP-2 bound to the superhydrophilic CNT arrays remained bioactive while they denatured on the superhydrophobic surfaces. These results are related to the combined effects of rhBMP-2 molecules interacting with poloxamer and the surface, which could be essential in the development of advanced carriers with tailored surface functionalities.
Resumo:
Oxygen Consumption by alternative oxidase (AOX), present in mitochondria of many angiosperms, is known to be cyanide-resistant in contrast to cytochrome oxidase. Its activity in potato tuber (Solarium tuberosum L.) was induced following chilling treatment at 4 degrees C.About half of the total O-2 consumption of succinate oxidation in such mitochondria was found to be sensitive to SHAM, a known inhibitor of AOX activity. Addition of catalase to the reaction mixture of AOX during the reaction decreased the rate of SHAM-sensitive oxygen consumption by nearly half, and addition at the end of the reaction released nearly half of the consumed oxygen by AOX, both typical of catalase action on H2O2. These findings with catalase suggest that the product of reduction of AOX is H2O2 and not H2O, as previously Surmised. In potatoes Subjected to chill stress (4 degrees C) for periods of 3, 5 and >= 8 days the activity of AOX in mitochondria increased progressively with a corresponding increase in the AOX protein detected by immunoblot of the protein.
Resumo:
The influence of grazing management on total soil organic carbon (SOC) and soil total nitrogen (TN) in tropical grasslands is an issue of considerable ecological and economic interest. Here we have used linear mixed models to investigate the effect of grazing management on stocks of SOC and TN in the top 0.5 m of the soil profile. The study site was a long-term pasture utilization experiment, 26 years after the experiment was established for sheep grazing on native Mitchell grass (Astrebla spp.) pasture in northern Australia. The pasture utilization rates were between 0% (exclosure) and 80%, assessed visually. We found that a significant amount of TN had been lost from the top 0.1 m of the soil profile as a result of grazing, with 80% pasture utilization resulting in a loss of 84 kg ha−1 over the 26-year period. There was no significant effect of pasture utilization rate on TN when greater soil depths were considered. There was no significant effect of pasture utilization rate on stocks of SOC and soil particulate organic carbon (POC), or the C:N ratio at any depth; however, visual trends in the data suggested some agreement with the literature, whereby increased grazing pressure appeared to: (i) decrease SOC and POC stocks; and, (ii) increase the C:N ratio. Overall, the statistical power of the study was limited, and future research would benefit from a more comprehensive sampling scheme. Previous studies at the site have found that a pasture utilization rate of 30% is sustainable for grazing production on Mitchell grass; however, given our results, we conclude that N inputs (possibly through management of native N2-fixing pasture legumes) should be made for long-term maintenance of soil health, and pasture productivity, within this ecosystem.
Resumo:
Biomedical engineering solutions like surgical simulators need High Performance Computing (HPC) to achieve real-time performance. Graphics Processing Units (GPUs) offer HPC capabilities at low cost and low power consumption. In this work, it is demonstrated that a liver which is discretized by about 2500 finite element nodes, can be graphically simulated in realtime, by making use of a GPU. Present work takes into consideration the time needed for the data transfer from CPU to GPU and back from GPU to CPU. Although behaviour of liver is very complicated, present computer simulation assumes linear elastostatics. One needs to use the commercial software ANSYS to obtain the global stiffness matrix of the liver. Results show that GPUs are useful for the real-time graphical simulation of liver, which in turn is needed in simulators that are used for training surgeons in laparoscopic surgery. Although the computer simulation should involve rendering also, neither rendering, nor the time needed for rendering and displaying the liver on a screen, is considered in the present work. The present work is just a demonstration of a concept; the concept is not really implemented and validated. Future work is to develop software which can accomplish real-time and very realistic graphical simulation of liver, with rendered image of liver on the screen changing in real-time according to the position of the surgical tool tip approximated as the mouse cursor in 3D.
Resumo:
This paper has been presented at the XIII Encuentros de Economía Aplicada, Sevilla, Spain, 2010.
Resumo:
Background Quality of cardiopulmonary resuscitation (CPR) is key to increase survival from cardiac arrest. Providing chest compressions with adequate rate and depth is difficult even for well-trained rescuers. The use of real-time feedback devices is intended to contribute to enhance chest compression quality. These devices are typically based on the double integration of the acceleration to obtain the chest displacement during compressions. The integration process is inherently unstable and leads to important errors unless boundary conditions are applied for each compression cycle. Commercial solutions use additional reference signals to establish these conditions, requiring additional sensors. Our aim was to study the accuracy of three methods based solely on the acceleration signal to provide feedback on the compression rate and depth. Materials and Methods We simulated a CPR scenario with several volunteers grouped in couples providing chest compressions on a resuscitation manikin. Different target rates (80, 100, 120, and 140 compressions per minute) and a target depth of at least 50 mm were indicated. The manikin was equipped with a displacement sensor. The accelerometer was placed between the rescuer's hands and the manikin's chest. We designed three alternatives to direct integration based on different principles (linear filtering, analysis of velocity, and spectral analysis of acceleration). We evaluated their accuracy by comparing the estimated depth and rate with the values obtained from the reference displacement sensor. Results The median (IQR) percent error was 5.9% (2.8-10.3), 6.3% (2.9-11.3), and 2.5% (1.2-4.4) for depth and 1.7% (0.0-2.3), 0.0% (0.0-2.0), and 0.9% (0.4-1.6) for rate, respectively. Depth accuracy depended on the target rate (p < 0.001) and on the rescuer couple (p < 0.001) within each method. Conclusions Accurate feedback on chest compression depth and rate during CPR is possible using exclusively the chest acceleration signal. The algorithm based on spectral analysis showed the best performance. Despite these encouraging results, further research should be conducted to asses the performance of these algorithms with clinical data.
Resumo:
Real-time cardiac ultrasound allows monitoring the heart motion during intracardiac beating heart procedures. Our application assists atrial septal defect (ASD) closure techniques using real-time 3D ultrasound guidance. One major image processing challenge is the processing of information at high frame rate. We present an optimized block flow technique, which combines the probability-based velocity computation for an entire block with template matching. We propose adapted similarity constraints both from frame to frame, to conserve energy, and globally, to minimize errors. We show tracking results on eight in-vivo 4D datasets acquired from porcine beating-heart procedures. Computing velocity at the block level with an optimized scheme, our technique tracks ASD motion at 41 frames/s. We analyze the errors of motion estimation and retrieve the cardiac cycle in ungated images. © 2007 IEEE.
Resumo:
Predictability — the ability to foretell that an implementation will not violate a set of specified reliability and timeliness requirements - is a crucial, highly desirable property of responsive embedded systems. This paper overviews a development methodology for responsive systems, which enhances predictability by eliminating potential hazards resulting from physically-unsound specifications. The backbone of our methodology is a formalism that restricts expressiveness in a way that allows the specification of only reactive, spontaneous, and causal computation. Unrealistic systems — possessing properties such as clairvoyance, caprice, infinite capacity, or perfect timing — cannot even be specified. We argue that this "ounce of prevention" at the specification level is likely to spare a lot of time and energy in the development cycle of responsive systems - not to mention the elimination of potential hazards that would have gone, otherwise, unnoticed.
Resumo:
Previous peptidomic analyses of the defensive skin secretion from the North American pickerel frog, Rana palustris, have established the presence of canonical bradykinin and multiple bradykinin-related peptides (BRPs). As a consequence of the multiplicity of peptides identified and their diverse primary structures, it was speculated that they must represent the products of expression of multiple genes. Here, we present unequivocal evidence that the majority of BRPs (11/13) identified in skin secretion by the peptidomic approach can be generated by differential site-specific protease cleavage from a single common precursor of 321 amino acid residues, named skin kininogen 1, whose primary structure was deduced from cloned skin secretion-derived cDNA. The organization of skin kininogen 1 consists of a hydrophobic signal peptide followed by eight non-identical domains each encoding a single copy of either canonical bradykinin or a BRP. Two additional splice variants, encoding precursors of 233 (skin kininogen 2) or 189 amino acid residues (skin kininogen 3), were also cloned and were found to lack BRP-encoding domains 5 and 6 or 4, 5 and 6, respectively. Thus, generation of peptidome diversity in amphibian defensive skin secretions can be achieved in part by differential protease cleavage of relatively large and multiple-encoding domain precursors reflecting a high degree of transcriptional economy.
Resumo:
The incretin hormone glucose-dependent insulinotropic polypeptide (GIP) is rapidly degraded in the circulation by dipeptidyl peptidase IV forming the N-terminally truncated peptide GIP(3-42). The present study examined the biological activity of this abundant circulating fragment peptide to establish its possible role in GIP action. Human GIP and GIP(3-42) were synthesised by Fmoc solid-phase peptide synthesis, purified by HPLC and characterised by electrospray ionisation-mass spectrometry. In GIP receptor-transfected Chinese hamster lung fibroblasts, GIP(3-42) dose dependently inhibited GIP-stimulated (10(-7) M) cAMP production (up to 75.4 +/-5.4%; P
Resumo:
Nepsilon-(Carboxymethyl)lysine (CML) is an advanced glycation end product formed on protein by combined nonenzymatic glycation and oxidation (glycoxidation) reactions. We now report that CML is also formed during metal-catalyzed oxidation of polyunsaturated fatty acids in the presence of protein. During copper-catalyzed oxidation in vitro, the CML content of low density lipoprotein increased in concert with conjugated dienes but was independent of the presence of the Amadori compound, fructoselysine, on the protein. CML was also formed in a time-dependent manner in RNase incubated under aerobic conditions in phosphate buffer containing arachidonate or linoleate; only trace amounts of CML were formed from oleate. After 6 days of incubation the yield of CML in RNase from arachidonate was approximately 0.7 mmol/mol lysine compared with only 0.03 mmol/mol lysine for protein incubated under the same conditions with glucose. Glyoxal, a known precursor of CML, was also formed during incubation of RNase with arachidonate. These results suggest that lipid peroxidation, as well as glycoxidation, may be an important source of CML in tissue proteins in vivo and that CML may be a general marker of oxidative stress and long term damage to protein in aging, atherosclerosis, and diabetes.