988 resultados para ranking systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Very large scale scheduling and planning tasks cannot be effectively addressed by fully automated schedule optimisation systems, since many key factors which govern 'fitness' in such cases are unformalisable. This raises the question of an interactive (or collaborative) approach, where fitness is assigned by the expert user. Though well-researched in the domains of interactively evolved art and music, this method is as yet rarely used in logistics. This paper concerns a difficulty shared by all interactive evolutionary systems (IESs), but especially those used for logistics or design problems. The difficulty is that objective evaluation of IESs is severely hampered by the need for expert humans in the loop. This makes it effectively impossible to, for example, determine with statistical confidence any ranking among a decent number of configurations for the parameters and strategy choices. We make headway into this difficulty with an Automated Tester (AT) for such systems. The AT replaces the human in experiments, and has parameters controlling its decision-making accuracy (modelling human error) and a built-in notion of a target solution which may typically be at odds with the solution which is optimal in terms of formalisable fitness. Using the AT, plausible evaluations of alternative designs for the IES can be done, allowing for (and examining the effects of) different levels of user error. We describe such an AT for evaluating an IES for very large scale planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Web service is one of the most fundamental technologies in implementing service oriented architecture (SOA) based applications. One essential challenge related to web service is to find suitable candidates with regard to web service consumer’s requests, which is normally called web service discovery. During a web service discovery protocol, it is expected that the consumer will find it hard to distinguish which ones are more suitable in the retrieval set, thereby making selection of web services a critical task. In this paper, inspired by the idea that the service composition pattern is significant hint for service selection, a personal profiling mechanism is proposed to improve ranking and recommendation performance. Since service selection is highly dependent on the composition process, personal knowledge is accumulated from previous service composition process and shared via collaborative filtering where a set of users with similar interest will be firstly identified. Afterwards a web service re-ranking mechanism is employed for personalised recommendation. Experimental studies are conduced and analysed to demonstrate the promising potential of this research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Huge image collections are becoming available lately. In this scenario, the use of Content-Based Image Retrieval (CBIR) systems has emerged as a promising approach to support image searches. The objective of CBIR systems is to retrieve the most similar images in a collection, given a query image, by taking into account image visual properties such as texture, color, and shape. In these systems, the effectiveness of the retrieval process depends heavily on the accuracy of ranking approaches. Recently, re-ranking approaches have been proposed to improve the effectiveness of CBIR systems by taking into account the relationships among images. The re-ranking approaches consider the relationships among all images in a given dataset. These approaches typically demands a huge amount of computational power, which hampers its use in practical situations. On the other hand, these methods can be massively parallelized. In this paper, we propose to speedup the computation of the RL-Sim algorithm, a recently proposed image re-ranking approach, by using the computational power of Graphics Processing Units (GPU). GPUs are emerging as relatively inexpensive parallel processors that are becoming available on a wide range of computer systems. We address the image re-ranking performance challenges by proposing a parallel solution designed to fit the computational model of GPUs. We conducted an experimental evaluation considering different implementations and devices. Experimental results demonstrate that significant performance gains can be obtained. Our approach achieves speedups of 7x from serial implementation considering the overall algorithm and up to 36x on its core steps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In developing countries many water distribution systems are branched networks with little redundancy. If any component in the distribution system fails, many users are left relying on secondary water sources. These sources oftentimes do not provide potable water and prolonged use leads to increased cases of water borne illnesses. Increasing redundancy in branched networks increases the reliability of the networks, but is oftentimes viewed as unaffordable. This paper presents a procedure for water system managers to use to determine which loops when added to a branch network provide the most benefit for users. Two methods are presented, one ranking the loops based on total number of users benefited, and one ranking the loops of number of vulnerable users benefited. A case study is presented using the water distribution system of Medina Bank Village, Belize. It was found that forming loops in upstream pipes connected to the main line had the potential to benefit the most users.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper sheds new light on the determination of environmental policies in majoritarian federal electoral systems such as the U.S., and derives implications for the environmental federalism debate on whether the national or local government should have authority over environmental policies. In majoritarian systems, where the legislature consists of geographically distinct electoral districts, the majority party (at either the national or the state level) favors its own home districts; depending on the location of polluting industries and the associated pollution damages, the majority party may therefore impose sub-optimally high or low pollution taxes due to a majority bias. We show that majority bias can influence the social-welfare ranking of alternative government policies and, in some cases, may actually bring distortionary policies closer to the first-best solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been hypothesized that results from the short term bioassays will ultimately provide information that will be useful for human health hazard assessment. Although toxicologic test systems have become increasingly refined, to date, no investigator has been able to provide qualitative or quantitative methods which would support the use of short term tests in this capacity.^ Historically, the validity of the short term tests have been assessed using the framework of the epidemiologic/medical screens. In this context, the results of the carcinogen (long term) bioassay is generally used as the standard. However, this approach is widely recognized as being biased and, because it employs qualitative data, cannot be used in the setting of priorities. In contrast, the goal of this research was to address the problem of evaluating the utility of the short term tests for hazard assessment using an alternative method of investigation.^ Chemical carcinogens were selected from the list of carcinogens published by the International Agency for Research on Carcinogens (IARC). Tumorigenicity and mutagenicity data on fifty-two chemicals were obtained from the Registry of Toxic Effects of Chemical Substances (RTECS) and were analyzed using a relative potency approach. The relative potency framework allows for the standardization of data "relative" to a reference compound. To avoid any bias associated with the choice of the reference compound, fourteen different compounds were used.^ The data were evaluated in a format which allowed for a comparison of the ranking of the mutagenic relative potencies of the compounds (as estimated using short term data) vs. the ranking of the tumorigenic relative potencies (as estimated from the chronic bioassays). The results were statistically significant (p $<$.05) for data standardized to thirteen of the fourteen reference compounds. Although this was a preliminary investigation, it offers evidence that the short term test systems may be of utility in ranking the hazards represented by chemicals which may be human carcinogens. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanisms that allow pathogens to colonize the host are not the product of isolated genes, but instead emerge from the concerted operation of regulatory networks. Therefore, identifying components and the systemic behavior of networks is necessary to a better understanding of gene regulation and pathogenesis. To this end, I have developed systems biology approaches to study transcriptional and post-transcriptional gene regulation in bacteria, with an emphasis in the human pathogen Mycobacterium tuberculosis (Mtb). First, I developed a network response method to identify parts of the Mtb global transcriptional regulatory network utilized by the pathogen to counteract phagosomal stresses and survive within resting macrophages. As a result, the method unveiled transcriptional regulators and associated regulons utilized by Mtb to establish a successful infection of macrophages throughout the first 14 days of infection. Additionally, this network-based analysis identified the production of Fe-S proteins coupled to lipid metabolism through the alkane hydroxylase complex as a possible strategy employed by Mtb to survive in the host. Second, I developed a network inference method to infer the small non-coding RNA (sRNA) regulatory network in Mtb. The method identifies sRNA-mRNA interactions by integrating a priori knowledge of possible binding sites with structure-driven identification of binding sites. The reconstructed network was useful to predict functional roles for the multitude of sRNAs recently discovered in the pathogen, being that several sRNAs were postulated to be involved in virulence-related processes. Finally, I applied a combined experimental and computational approach to study post-transcriptional repression mediated by small non-coding RNAs in bacteria. Specifically, a probabilistic ranking methodology termed rank-conciliation was developed to infer sRNA-mRNA interactions based on multiple types of data. The method was shown to improve target prediction in Escherichia coli, and therefore is useful to prioritize candidate targets for experimental validation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work highlights two critical taboos in organizations: 1)taking for granted the quality of certain capabilities and attitudes of the end-user representatives (EUR) in information systems development projects (ISDP), and 2) the EUR´s inherent accountability for losses in IS investments. These issues are neither addressed by theory nor research when assessing success/ failure. A triangulation approach was applied to combine quantitative and qualitative methods, having convergent results and showing that in problematic cases, paradoxically, the origin of IS rejection by end users (EU) points towards the EUR themselves. It has been evaluated to what extent some EUR factors impacted a macro ISDP involving an enterprise resource planning (ERP) package, ranking the ‘knowledge of the EUR’ as the main latent variable. The results validate some issues found throughout decades of praxis, confirming that when not properly managed the EUR role by itself has a direct relationship with IS rejection and significant losses in IS investments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This exploratory study is concerned with the integrated appraisal of multi-storey dwelling blocks which incorporate large concrete panel systems (LPS). The first step was to look at U.K. multi-storey dwelling stock in general, and under the management of Birmingham City Council in particular. The information has been taken from the databases of three departments in the City of Birmingham, and rearranged in a new database using a suite of PC software called `PROXIMA' for clarity and analysis. One hundred of their stock were built large concrete panel system. Thirteen LPS blocks were chosen for the purpose of this study as case-studies depending mainly on the height and age factors of the block. A new integrated appraisal technique has been created for the LPS dwelling blocks, which takes into account the most physical and social factors affecting the condition and acceptability of these blocks. This appraisal technique is built up in a hierarchical form moving from the general approach to particular elements (a tree model). It comprises two main approaches; physical and social. In the physical approach, the building is viewed as a series of manageable elements and sub-elements to cover every single physical or environmental factor of the block, in which the condition of the block is analysed. A quality score system has been developed which depends mainly on the qualitative and quantitative conditions of each category in the appraisal tree model, and leads to physical ranking order of the study blocks. In the social appraisal approach, the residents' satisfaction and attitude toward their multi-storey dwelling block was analysed in relation to: a. biographical and housing related characteristics; and b. social, physical and environmental factors associated with this sort of dwelling, block and estate in general.The random sample consisted of 268 residents living in the 13 case study blocks. Data collected was analysed using frequency counts, percentages, means, standard deviations, Kendall's tue, r-correlation coefficients, t-test, analysis of variance (ANOVA) and multiple regression analysis. The analysis showed a marginally positive satisfaction and attitude towards living in the block. The five most significant factors associated with the residents' satisfaction and attitude in descending order were: the estate, in general; the service categories in the block, including heating system and lift services; vandalism; the neighbours; and the security system of the block. An important attribute of this method, is that it is relatively inexpensive to implement, especially when compared to alternatives adopted by some local authorities and the BRE. It is designed to save time, money and effort, to aid decision making, and to provide ranked priority to the multi-storey dwelling stock, in addition to many other advantages. A series of solution options to the problems of the block was sought for selection and testing before implementation. The traditional solutions have usually resulted in either demolition or costly physical maintenance and social improvement of the blocks. However, a new solution has now emerged, which is particularly suited to structurally sound units. The solution of `re-cycling' might incorporate the reuse of an entire block or part of it, by removing panels, slabs and so forth from the upper floors in order to reconstruct them as low-rise accommodations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selecting the best alternative in a group decision making is a subject of many recent studies. The most popular method proposed for ranking the alternatives is based on the distance of each alternative to the ideal alternative. The ideal alternative may never exist; hence the ranking results are biased to the ideal point. The main aim in this study is to calculate a fuzzy ideal point that is more realistic to the crisp ideal point. On the other hand, recently Data Envelopment Analysis (DEA) is used to find the optimum weights for ranking the alternatives. This paper proposes a four stage approach based on DEA in the Fuzzy environment to aggregate preference rankings. An application of preferential voting system shows how the new model can be applied to rank a set of alternatives. Other two examples indicate the priority of the proposed method compared to the some other suggested methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A search query, being a very concise grounding of user intent, could potentially have many possible interpretations. Search engines hedge their bets by diversifying top results to cover multiple such possibilities so that the user is likely to be satisfied, whatever be her intended interpretation. Diversified Query Expansion is the problem of diversifying query expansion suggestions, so that the user can specialize the query to better suit her intent, even before perusing search results. We propose a method, Select-Link-Rank, that exploits semantic information from Wikipedia to generate diversified query expansions. SLR does collective processing of terms and Wikipedia entities in an integrated framework, simultaneously diversifying query expansions and entity recommendations. SLR starts with selecting informative terms from search results of the initial query, links them to Wikipedia entities, performs a diversity-conscious entity scoring and transfers such scoring to the term space to arrive at query expansion suggestions. Through an extensive empirical analysis and user study, we show that our method outperforms the state-of-the-art diversified query expansion and diversified entity recommendation techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A primary goal of context-aware systems is delivering the right information at the right place and right time to users in order to enable them to make effective decisions and improve their quality of life. There are three key requirements for achieving this goal: determining what information is relevant, personalizing it based on the users’ context (location, preferences, behavioral history etc.), and delivering it to them in a timely manner without an explicit request from them. These requirements create a paradigm that we term as “Proactive Context-aware Computing”. Most of the existing context-aware systems fulfill only a subset of these requirements. Many of these systems focus only on personalization of the requested information based on users’ current context. Moreover, they are often designed for specific domains. In addition, most of the existing systems are reactive - the users request for some information and the system delivers it to them. These systems are not proactive i.e. they cannot anticipate users’ intent and behavior and act proactively without an explicit request from them. In order to overcome these limitations, we need to conduct a deeper analysis and enhance our understanding of context-aware systems that are generic, universal, proactive and applicable to a wide variety of domains. To support this dissertation, we explore several directions. Clearly the most significant sources of information about users today are smartphones. A large amount of users’ context can be acquired through them and they can be used as an effective means to deliver information to users. In addition, social media such as Facebook, Flickr and Foursquare provide a rich and powerful platform to mine users’ interests, preferences and behavioral history. We employ the ubiquity of smartphones and the wealth of information available from social media to address the challenge of building proactive context-aware systems. We have implemented and evaluated a few approaches, including some as part of the Rover framework, to achieve the paradigm of Proactive Context-aware Computing. Rover is a context-aware research platform which has been evolving for the last 6 years. Since location is one of the most important context for users, we have developed ‘Locus’, an indoor localization, tracking and navigation system for multi-story buildings. Other important dimensions of users’ context include the activities that they are engaged in. To this end, we have developed ‘SenseMe’, a system that leverages the smartphone and its multiple sensors in order to perform multidimensional context and activity recognition for users. As part of the ‘SenseMe’ project, we also conducted an exploratory study of privacy, trust, risks and other concerns of users with smart phone based personal sensing systems and applications. To determine what information would be relevant to users’ situations, we have developed ‘TellMe’ - a system that employs a new, flexible and scalable approach based on Natural Language Processing techniques to perform bootstrapped discovery and ranking of relevant information in context-aware systems. In order to personalize the relevant information, we have also developed an algorithm and system for mining a broad range of users’ preferences from their social network profiles and activities. For recommending new information to the users based on their past behavior and context history (such as visited locations, activities and time), we have developed a recommender system and approach for performing multi-dimensional collaborative recommendations using tensor factorization. For timely delivery of personalized and relevant information, it is essential to anticipate and predict users’ behavior. To this end, we have developed a unified infrastructure, within the Rover framework, and implemented several novel approaches and algorithms that employ various contextual features and state of the art machine learning techniques for building diverse behavioral models of users. Examples of generated models include classifying users’ semantic places and mobility states, predicting their availability for accepting calls on smartphones and inferring their device charging behavior. Finally, to enable proactivity in context-aware systems, we have also developed a planning framework based on HTN planning. Together, these works provide a major push in the direction of proactive context-aware computing.