963 resultados para random search algorithms


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, several distributed video coding (DVC) solutions based on the distributed source coding (DSC) paradigm have appeared in the literature. Wyner-Ziv (WZ) video coding, a particular case of DVC where side information is made available at the decoder, enable to achieve a flexible distribution of the computational complexity between the encoder and decoder, promising to fulfill novel requirements from applications such as video surveillance, sensor networks and mobile camera phones. The quality of the side information at the decoder has a critical role in determining the WZ video coding rate-distortion (RD) performance, notably to raise it to a level as close as possible to the RD performance of standard predictive video coding schemes. Towards this target, efficient motion search algorithms for powerful frame interpolation are much needed at the decoder. In this paper, the RD performance of a Wyner-Ziv video codec is improved by using novel, advanced motion compensated frame interpolation techniques to generate the side information. The development of these type of side information estimators is a difficult problem in WZ video coding, especially because the decoder only has available some reference, decoded frames. Based on the regularization of the motion field, novel side information creation techniques are proposed in this paper along with a new frame interpolation framework able to generate higher quality side information at the decoder. To illustrate the RD performance improvements, this novel side information creation framework has been integrated in a transform domain turbo coding based Wyner-Ziv video codec. Experimental results show that the novel side information creation solution leads to better RD performance than available state-of-the-art side information estimators, with improvements up to 2 dB: moreover, it allows outperforming H.264/AVC Intra by up to 3 dB with a lower encoding complexity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electricity short-term load forecast is very important for the operation of power systems. In this work a classical exponential smoothing model, the Holt-Winters with double seasonality was used to test for accurate predictions applied to the Portuguese demand time series. Some metaheuristic algorithms for the optimal selection of the smoothing parameters of the Holt-Winters forecast function were used and the results after testing in the time series showed little differences among methods, so the use of the simple local search algorithms is recommended as they are easier to implement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electricity short-term load forecast is very important for the operation of power systems. In this work a classical exponential smoothing model, the Holt-Winters with double seasonality was used to test for accurate predictions applied to the Portuguese demand time series. Some metaheuristic algorithms for the optimal selection of the smoothing parameters of the Holt-Winters forecast function were used and the results after testing in the time series showed little differences among methods, so the use of the simple local search algorithms is recommended as they are easier to implement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A tese que de seguida se esboça assenta sobre uma inquietação fundamental: o facto de cada um dar por si atirado na vida, de, quando cada um dá por si, dar por si a ser vida, etc. Acontece que, logo que se tenta focar mais precisamente de que é de que se trata quando se trata da “vida”, nota-se que esse fenómeno tem habitualmente a forma de um acontecimento anónimo: não se sabe bem a que é que corresponde, que conteúdos tem, que estruturas fundamentais a suportam, etc. Isto é: somos levados pela vida (passamos pela vida, atravessamo-la, estamos expostos a ela, etc.) sem saber exactamente a que é que estamos expostos, o que é que nos leva, sobre que pilares assenta a nossa vivência e a nossa compreensão dela, etc. A tese que se segue não tem a pretensão de deixar definitivamente respondidas estas perguntas; tudo o que faz, na verdade, é meramente proceder a um breve levantamento ou a um registo de algumas das estruturas fundamentais da vida a partir do ângulo da experiência da vida. E, como se espera deixar claro, procurar a resposta a partir do ângulo da experiência (do ângulo da experiência da vida) não é algo acidental ou fortuito. O que se procurará apurar é se não haverá tais laços de afinidade entre “vida” e “experiência” que todas as operações próprias da experiência têm lugar numa vinculação e estão subordinadas às estruturas fundamentais da vida (estruturas que ultrapassam o âmbito da “experiência”) e que, assim também, a vida tenha, de raiz, no modo como nela somos levados e conduzidos, a estrutura ou a forma da “experiência”.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Projecte d'adaptació del programa GNU Chess al sistema de grid computing 'Condor'. I amb això, es planteja un estudi sobre els algorismes de cerca i la seva aplicació en entorns distribuïts. Una sèrie de proves sobre unes mostres de una partida d'escacs contra el propi GNU Chess ens ajuden a posar de relleu els avantatges i inconvenients de cada un dels algorismes proposats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract : In the subject of fingerprints, the rise of computers tools made it possible to create powerful automated search algorithms. These algorithms allow, inter alia, to compare a fingermark to a fingerprint database and therefore to establish a link between the mark and a known source. With the growth of the capacities of these systems and of data storage, as well as increasing collaboration between police services on the international level, the size of these databases increases. The current challenge for the field of fingerprint identification consists of the growth of these databases, which makes it possible to find impressions that are very similar but coming from distinct fingers. However and simultaneously, this data and these systems allow a description of the variability between different impressions from a same finger and between impressions from different fingers. This statistical description of the withinand between-finger variabilities computed on the basis of minutiae and their relative positions can then be utilized in a statistical approach to interpretation. The computation of a likelihood ratio, employing simultaneously the comparison between the mark and the print of the case, the within-variability of the suspects' finger and the between-variability of the mark with respect to a database, can then be based on representative data. Thus, these data allow an evaluation which may be more detailed than that obtained by the application of rules established long before the advent of these large databases or by the specialists experience. The goal of the present thesis is to evaluate likelihood ratios, computed based on the scores of an automated fingerprint identification system when the source of the tested and compared marks is known. These ratios must support the hypothesis which it is known to be true. Moreover, they should support this hypothesis more and more strongly with the addition of information in the form of additional minutiae. For the modeling of within- and between-variability, the necessary data were defined, and acquired for one finger of a first donor, and two fingers of a second donor. The database used for between-variability includes approximately 600000 inked prints. The minimal number of observations necessary for a robust estimation was determined for the two distributions used. Factors which influence these distributions were also analyzed: the number of minutiae included in the configuration and the configuration as such for both distributions, as well as the finger number and the general pattern for between-variability, and the orientation of the minutiae for within-variability. In the present study, the only factor for which no influence has been shown is the orientation of minutiae The results show that the likelihood ratios resulting from the use of the scores of an AFIS can be used for evaluation. Relatively low rates of likelihood ratios supporting the hypothesis known to be false have been obtained. The maximum rate of likelihood ratios supporting the hypothesis that the two impressions were left by the same finger when the impressions came from different fingers obtained is of 5.2 %, for a configuration of 6 minutiae. When a 7th then an 8th minutia are added, this rate lowers to 3.2 %, then to 0.8 %. In parallel, for these same configurations, the likelihood ratios obtained are on average of the order of 100,1000, and 10000 for 6,7 and 8 minutiae when the two impressions come from the same finger. These likelihood ratios can therefore be an important aid for decision making. Both positive evolutions linked to the addition of minutiae (a drop in the rates of likelihood ratios which can lead to an erroneous decision and an increase in the value of the likelihood ratio) were observed in a systematic way within the framework of the study. Approximations based on 3 scores for within-variability and on 10 scores for between-variability were found, and showed satisfactory results. Résumé : Dans le domaine des empreintes digitales, l'essor des outils informatisés a permis de créer de puissants algorithmes de recherche automatique. Ces algorithmes permettent, entre autres, de comparer une trace à une banque de données d'empreintes digitales de source connue. Ainsi, le lien entre la trace et l'une de ces sources peut être établi. Avec la croissance des capacités de ces systèmes, des potentiels de stockage de données, ainsi qu'avec une collaboration accrue au niveau international entre les services de police, la taille des banques de données augmente. Le défi actuel pour le domaine de l'identification par empreintes digitales consiste en la croissance de ces banques de données, qui peut permettre de trouver des impressions très similaires mais provenant de doigts distincts. Toutefois et simultanément, ces données et ces systèmes permettent une description des variabilités entre différentes appositions d'un même doigt, et entre les appositions de différents doigts, basées sur des larges quantités de données. Cette description statistique de l'intra- et de l'intervariabilité calculée à partir des minuties et de leurs positions relatives va s'insérer dans une approche d'interprétation probabiliste. Le calcul d'un rapport de vraisemblance, qui fait intervenir simultanément la comparaison entre la trace et l'empreinte du cas, ainsi que l'intravariabilité du doigt du suspect et l'intervariabilité de la trace par rapport à une banque de données, peut alors se baser sur des jeux de données représentatifs. Ainsi, ces données permettent d'aboutir à une évaluation beaucoup plus fine que celle obtenue par l'application de règles établies bien avant l'avènement de ces grandes banques ou par la seule expérience du spécialiste. L'objectif de la présente thèse est d'évaluer des rapports de vraisemblance calcul és à partir des scores d'un système automatique lorsqu'on connaît la source des traces testées et comparées. Ces rapports doivent soutenir l'hypothèse dont il est connu qu'elle est vraie. De plus, ils devraient soutenir de plus en plus fortement cette hypothèse avec l'ajout d'information sous la forme de minuties additionnelles. Pour la modélisation de l'intra- et l'intervariabilité, les données nécessaires ont été définies, et acquises pour un doigt d'un premier donneur, et deux doigts d'un second donneur. La banque de données utilisée pour l'intervariabilité inclut environ 600000 empreintes encrées. Le nombre minimal d'observations nécessaire pour une estimation robuste a été déterminé pour les deux distributions utilisées. Des facteurs qui influencent ces distributions ont, par la suite, été analysés: le nombre de minuties inclus dans la configuration et la configuration en tant que telle pour les deux distributions, ainsi que le numéro du doigt et le dessin général pour l'intervariabilité, et la orientation des minuties pour l'intravariabilité. Parmi tous ces facteurs, l'orientation des minuties est le seul dont une influence n'a pas été démontrée dans la présente étude. Les résultats montrent que les rapports de vraisemblance issus de l'utilisation des scores de l'AFIS peuvent être utilisés à des fins évaluatifs. Des taux de rapports de vraisemblance relativement bas soutiennent l'hypothèse que l'on sait fausse. Le taux maximal de rapports de vraisemblance soutenant l'hypothèse que les deux impressions aient été laissées par le même doigt alors qu'en réalité les impressions viennent de doigts différents obtenu est de 5.2%, pour une configuration de 6 minuties. Lorsqu'une 7ème puis une 8ème minutie sont ajoutées, ce taux baisse d'abord à 3.2%, puis à 0.8%. Parallèlement, pour ces mêmes configurations, les rapports de vraisemblance sont en moyenne de l'ordre de 100, 1000, et 10000 pour 6, 7 et 8 minuties lorsque les deux impressions proviennent du même doigt. Ces rapports de vraisemblance peuvent donc apporter un soutien important à la prise de décision. Les deux évolutions positives liées à l'ajout de minuties (baisse des taux qui peuvent amener à une décision erronée et augmentation de la valeur du rapport de vraisemblance) ont été observées de façon systématique dans le cadre de l'étude. Des approximations basées sur 3 scores pour l'intravariabilité et sur 10 scores pour l'intervariabilité ont été trouvées, et ont montré des résultats satisfaisants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We construct an uncoupled randomized strategy of repeated play such that, if every player follows such a strategy, then the joint mixed strategy profiles converge, almost surely, to a Nash equilibrium of the one-shot game. The procedure requires very little in terms of players' information about the game. In fact, players' actions are based only on their own past payoffs and, in a variant of the strategy, players need not even know that their payoffs are determined through other players' actions. The procedure works for general finite games and is based on appropriate modifications of a simple stochastic learningrule introduced by Foster and Young.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this thesis is to develop and generalize further the differential evolution based data classification method. For many years, evolutionary algorithms have been successfully applied to many classification tasks. Evolution algorithms are population based, stochastic search algorithms that mimic natural selection and genetics. Differential evolution is an evolutionary algorithm that has gained popularity because of its simplicity and good observed performance. In this thesis a differential evolution classifier with pool of distances is proposed, demonstrated and initially evaluated. The differential evolution classifier is a nearest prototype vector based classifier that applies a global optimization algorithm, differential evolution, to determine the optimal values for all free parameters of the classifier model during the training phase of the classifier. The differential evolution classifier applies the individually optimized distance measure for each new data set to be classified is generalized to cover a pool of distances. Instead of optimizing a single distance measure for the given data set, the selection of the optimal distance measure from a predefined pool of alternative measures is attempted systematically and automatically. Furthermore, instead of only selecting the optimal distance measure from a set of alternatives, an attempt is made to optimize the values of the possible control parameters related with the selected distance measure. Specifically, a pool of alternative distance measures is first created and then the differential evolution algorithm is applied to select the optimal distance measure that yields the highest classification accuracy with the current data. After determining the optimal distance measures for the given data set together with their optimal parameters, all determined distance measures are aggregated to form a single total distance measure. The total distance measure is applied to the final classification decisions. The actual classification process is still based on the nearest prototype vector principle; a sample belongs to the class represented by the nearest prototype vector when measured with the optimized total distance measure. During the training process the differential evolution algorithm determines the optimal class vectors, selects optimal distance metrics, and determines the optimal values for the free parameters of each selected distance measure. The results obtained with the above method confirm that the choice of distance measure is one of the most crucial factors for obtaining higher classification accuracy. The results also demonstrate that it is possible to build a classifier that is able to select the optimal distance measure for the given data set automatically and systematically. After finding optimal distance measures together with optimal parameters from the particular distance measure results are then aggregated to form a total distance, which will be used to form the deviation between the class vectors and samples and thus classify the samples. This thesis also discusses two types of aggregation operators, namely, ordered weighted averaging (OWA) based multi-distances and generalized ordered weighted averaging (GOWA). These aggregation operators were applied in this work to the aggregation of the normalized distance values. The results demonstrate that a proper combination of aggregation operator and weight generation scheme play an important role in obtaining good classification accuracy. The main outcomes of the work are the six new generalized versions of previous method called differential evolution classifier. All these DE classifier demonstrated good results in the classification tasks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this thesis is to propose a novel control method for teleoperated electrohydraulic servo systems that implements a reliable haptic sense between the human and manipulator interaction, and an ideal position control between the manipulator and the task environment interaction. The proposed method has the characteristics of a universal technique independent of the actual control algorithm and it can be applied with other suitable control methods as a real-time control strategy. The motivation to develop this control method is the necessity for a reliable real-time controller for teleoperated electrohydraulic servo systems that provides highly accurate position control based on joystick inputs with haptic capabilities. The contribution of the research is that the proposed control method combines a directed random search method and a real-time simulation to develop an intelligent controller in which each generation of parameters is tested on-line by the real-time simulator before being applied to the real process. The controller was evaluated on a hydraulic position servo system. The simulator of the hydraulic system was built based on Markov chain Monte Carlo (MCMC) method. A Particle Swarm Optimization algorithm combined with the foraging behavior of E. coli bacteria was utilized as the directed random search engine. The control strategy allows the operator to be plugged into the work environment dynamically and kinetically. This helps to ensure the system has haptic sense with high stability, without abstracting away the dynamics of the hydraulic system. The new control algorithm provides asymptotically exact tracking of both, the position and the contact force. In addition, this research proposes a novel method for re-calibration of multi-axis force/torque sensors. The method makes several improvements to traditional methods. It can be used without dismantling the sensor from its application and it requires smaller number of standard loads for calibration. It is also more cost efficient and faster in comparison to traditional calibration methods. The proposed method was developed in response to re-calibration issues with the force sensors utilized in teleoperated systems. The new approach aimed to avoid dismantling of the sensors from their applications for applying calibration. A major complication with many manipulators is the difficulty accessing them when they operate inside a non-accessible environment; especially if those environments are harsh; such as in radioactive areas. The proposed technique is based on design of experiment methodology. It has been successfully applied to different force/torque sensors and this research presents experimental validation of use of the calibration method with one of the force sensors which method has been applied to.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and deterministic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel metaheuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS metaheuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and determinis- tic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel meta–heuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS meta–heuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mesh generation is an important step inmany numerical methods.We present the “HierarchicalGraphMeshing” (HGM)method as a novel approach to mesh generation, based on algebraic graph theory.The HGM method can be used to systematically construct configurations exhibiting multiple hierarchies and complex symmetry characteristics. The hierarchical description of structures provided by the HGM method can be exploited to increase the efficiency of multiscale and multigrid methods. In this paper, the HGMmethod is employed for the systematic construction of super carbon nanotubes of arbitrary order, which present a pertinent example of structurally and geometrically complex, yet highly regular, structures. The HGMalgorithm is computationally efficient and exhibits good scaling characteristics. In particular, it scales linearly for super carbon nanotube structures and is working much faster than geometry-based methods employing neighborhood search algorithms. Its modular character makes it conducive to automatization. For the generation of a mesh, the information about the geometry of the structure in a given configuration is added in a way that relates geometric symmetries to structural symmetries. The intrinsically hierarchic description of the resulting mesh greatly reduces the effort of determining mesh hierarchies for multigrid and multiscale applications and helps to exploit symmetry-related methods in the mechanical analysis of complex structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a general Multi-Agent System framework for distributed data mining based on a Peer-to-Peer model. Agent protocols are implemented through message-based asynchronous communication. The framework adopts a dynamic load balancing policy that is particularly suitable for irregular search algorithms. A modular design allows a separation of the general-purpose system protocols and software components from the specific data mining algorithm. The experimental evaluation has been carried out on a parallel frequent subgraph mining algorithm, which has shown good scalability performances.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonlinear system identification is considered using a generalized kernel regression model. Unlike the standard kernel model, which employs a fixed common variance for all the kernel regressors, each kernel regressor in the generalized kernel model has an individually tuned diagonal covariance matrix that is determined by maximizing the correlation between the training data and the regressor using a repeated guided random search based on boosting optimization. An efficient construction algorithm based on orthogonal forward regression with leave-one-out (LOO) test statistic and local regularization (LR) is then used to select a parsimonious generalized kernel regression model from the resulting full regression matrix. The proposed modeling algorithm is fully automatic and the user is not required to specify any criterion to terminate the construction procedure. Experimental results involving two real data sets demonstrate the effectiveness of the proposed nonlinear system identification approach.