998 resultados para rDNA-ITS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Restriction fragment length polymorphism (RFLP) and sequence analyses of the PCR-amplified 16S-23S rDNA intergenic spacer (ITS) were used for differentiating Acidithiobacillus thiooxidans strains from other related acidithiobacilli, including A. ferrooxidans and A. caldus. RFLP fingerprints obtained with AluI, DdeI, HaeIII, HinfI and MspI enabled the differentiation of all Acidithiobacillus reference strains into species groups. The A. thiooxidans strains investigated (metal mine isolates) yielded identical RFLP patterns to the A. thiooxidans type strain (ATCC 19377(T)), except for strain DAMS, which had a distinct pattern for all enzymes tested. Fourteen A. ferrooxidans mine strains were assigned to 3 RFLP groups, the majority of which were grouped with A. ferrooxidans ATCC 23270(T). The spacer region of one representative strain from each of the RFLP groups obtained was subjected to sequence analysis, in addition to eleven additional A. thiooxidans strains isolated from sediment and water samples, and A. caldus DSM 8584(T). The tRNA(IIe) and tRNA(Ala) genes, present in all strains analyzed, showed high sequence similarity. Phylogenetic analysis of the ITS sequences differentiated all three Acidithiobacillus species. Inter- and infraspecific genetic variations detected were mainly due to the size and sequence polymorphism of the ITS3 region. Mantel tests showed no significant correlation between ITS sequence similarity and the geographical origin of strains. The results showed that the 16S-23S rDNA spacer region is a useful target for the development of molecular-based methods aimed at the detection, rapid differentiation and identification of acidithiobacilli. (C) 2004 Elsevier SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pair of primers directed to 16S-23S rDNA interspacer (ITS) was designed directed to Brucella genetic sequences in order to develop a polymerase chain reaction (PCR) putatively capable of amplifying DNA from any Brucella species. Nucleic acid extracts from whole-blood from naive dogs were spiked with decreasing amounts of Brucella canis RM6/66 DNA and the resulting solutions were tested by PCR. In addition, the ability of PCR to amplify Brucella spp. genetic sequences from naturally infected dogs was evaluated using 210 whole-blood samples of dogs from 19 kennels. The whole-blood samples collected were subjected to blood culture and PCR. Serodiagnosis was performed using the rapid slide agglutination test with and without 2-mercaptoethanol. The DNA from whole blood was extracted using proteinase-K, sodium dodecyl sulphate and cetyl trimethyl ammonium bromide followed by phenol-chloroform purification. The PCR was capable of detecting as little as 3.8 fg of Brucella DNA mixed with 450 ng of host DNA. Theoretically, 3.8 fg of Brucella DNA represents the total genomic mass of fewer than two bacterial cells. The PCR diagnostic sensitivity and specificity were 100%. From the results observed in the present study, we conclude that PCR could be used as confirmatory test for diagnosis of B. canis infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The length polymorphism of ribosomal DNA ITS-1 intergenic spacer was analyzed in eight species of triatomines belonging to Triatoma, Rhodnius, and Panstrongylus genera. The analyzed species were Rhodnius domesticus, R. neivai, R. robustus, Triatoma brasiliensis, T. infestans, T. vitticeps, Panstrongylus megistus, and P. herreri. These insects are vectors of Chagas' disease, one of the most prominent public health problems among South American countries. This work allowed the differentiation between species of the Triatomini and Rhodniini tribes through the analysis of ITS-1 length polymorphism by PCR and RFLP techniques. The species of the Triatoma and Panstrongylus genera presented an amplified ITS-1 fragment between 600 and 1000 bp, whereas Rhodnius presented a less variable ITS-1 length fragment, around 300 bp, which could reflect the monophyletic origin of the Rhodniini tribe. Species belonging to this genus were further differentiated by RFLP with HaeIII and AluI endonucleases. Our results corroborate the hypothesis of polyphyletic origin in this group of insects and contribute to knowledge about evolutionary relationships in triatomines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present the first report of the occurrence of a binucleate Rhizoctonia spp. causing hypocotyl and root rot in kale in Brazil. Rhizoctonia spp. were isolated from kale (Brassica oleracea var. acephala) with symptoms of hypocotyl and root rot. The isolates, characterized as binucleate Rhizoctonia spp., did not show an anastomosis reaction with any of the binucleate Rhizoctonia spp. testers used. The pathogenicity of the isolates was tested under greenhouse conditions; all isolates were pathogenic and showed different symptom severities on kale. The ITS-5.8S rDNA sequences of kale isolates and 50 testers (25 binucleate Rhizoctonia spp. and 25 Rhizoctonia solani) were compared in order to characterize the genetic identity of Rhizoctonia spp. infecting kale. The kale isolates showed genetic identities ranging from 99.3 to 99.8% and were phylogenetically closely related to CAG 7 (AF354084), with identities of 98.5 and 98.7%. It is suggested that the binucleate Rhizoctonia spp. causing hypocotyl and root rot on kale Brazil comprises a new AG not yet described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nucleoli, nuclear organelles in which ribosomal RNA is synthesized and processed, emerge from nucleolar organizers (NORs) located in distinct chromosomal regions. In polytene nuclei of dipterans, nucleoli of some species can be observed under light microscopy exhibiting distinctive morphology: Drosophila and chironomid species display well-formed nucleoli in contrast to the fragmented and dispersed nucleoli seen in sciarid flies. The available data show no apparent relationship between nucleolar morphology and location of NORs in Diptera. The regulation of rRNA transcription involves controlling both the transcription rate per gene as well as the proportion of rRNA genes adopting a proper chromatin structure for transcription, since active and inactive rRNA gene copies coexist in NORs. Transcription units organized in nucleosomes and those lacking canonical nucleosomes can be analyzed by the method termed psoralen gel retarding assay (PGRA), allowing inferences on the ratio of active to inactive rRNA gene copies. In this work, possible connections between chromosomal location of NORs and proportion of active rRNA genes were studied in Drosophila melanogaster, and in chironomid and sciarid species. The data suggested a link between location of NORs and proportion of active rRNA genes since the copy number showing nucleosomal organization predominates when NORs are located in the pericentric heterochromatin. The results presented in this work are in agreement with previous data on the chromatin structure of rRNA genes from distantly related eukaryotes, as assessed by the PGRA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the diversity of endophytic fungi found on grape (Vitis labrusca cv. Niagara Rosada) leaves collected from Salesopolis, SP, Brazil. The fungi were isolated and characterized by amplified ribosomal DNA restriction analysis, followed by sequencing of the ITS1-5.8S-ITS2 rDNA. In addition, the ability of these endophytic fungi to inhibit the grapevine pathogen Fusarium oxysporum f. sp herbemontis was determined in vitro. We also observed that the climatic factors, such as temperature and rainfall, have no effect on the frequency of infection by endophytic fungi. The endophytic fungal community that was identified included Aporospora terricola, Aureobasidium pullulans, Bjerkandera adusta, Colletotrichum boninense, C. gloeosporioides, Diaporthe helianthi, D. phaseolorum, Epicoccum nigrum, Flavodon flavus, Fusarium subglutinans, F. sacchari, Guignardia mangiferae, Lenzites elegans, Paraphaeosphaeria pilleata, Phanerochaete sordida, Phyllosticta sp, Pleurotus nebrodensis, Preussia africana, Tinctoporellus epiniltinus, and Xylaria berteri. Among these isolates, two, C. gloeosporioides and F. flavus, showed potential antagonistic activity against F. oxysporum f. sp herbemontis. We suggest the involvement of the fungal endophyte community of V. labrusca in protecting the host plant against pathogenic Fusarium species. Possibly, some endophytic isolates could be selected for the development of biological control agents for grape fungal disease; alternatively, management strategies could be tailored to increase these beneficial fungi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Musculoskeletal infections are infections of the bone and surrounding tissues. They are currently diagnosed based on culture analysis, which is the gold standard for pathogen identification. However, these clinical laboratory methods are frequently inadequate for the identification of the causative agents, because a large percentage (25-50%) of confirmed musculoskeletal infections are false negatives in which no pathogen is identified in culture. My data supports these results. The goal of this project was to use PCR amplification of a portion of the 16S rRNA gene to test an alternative approach for the identification of these pathogens and to assess the diversity of the bacteria involved. The advantages of this alternative method are that it should increase sample sensitivity and the speed of detection. In addition, bacteria that are non-culturable or in low abundance can be detected using this molecular technique. However, a complication of this approach is that the majority of musculoskeletal infections are polymicrobial, which prohibits direct identification from the infected tissue by DNA sequencing of the initial 16S rDNA amplification products. One way to solve this problem is to use denaturing gradient gel electrophoresis (DGGE) to separate the PCR products before DNA sequencing. Denaturing gradient gel electrophoresis (DGGE) separates DNA molecules based on their melting point, which is determined by their DNA sequence. This analytical technique allows a mixture of PCR products of the same length that electrophoreses through agarose gels as one band, to be separated into different bands and then used for DNA sequence analysis. In this way, the DGGE allows for the identification of individual bacterial species in polymicrobial-infected tissue, which is critical for improving clinical outcomes. By combining the 16S rDNA amplification and the DGGE techniques together, an alternative approach for identification has been used. The 16S rRNA gene PCR-DGGE method includes several critical steps: DNA extraction from tissue biopsies, amplification of the bacterial DNA, PCR product separation by DGGE, amplification of the gel-extracted DNA, and DNA sequencing and analysis. Each step of the method was optimized to increase its sensitivity and for rapid detection of the bacteria present in human tissue samples. The limit of detection for the DNA extraction from tissue was at least 20 Staphylococcus aureus cells and the limit of detection for PCR was at least 0.05 pg of template DNA. The conditions for DGGE electrophoreses were optimized by using a double gradient of acrylamide (6 – 10%) and denaturant (30-70%), which increased the separation between distinct PCR products. The use of GelRed (Biotium) improved the DNA visualization in the DGGE gel. To recover the DNA from the DGGE gels the gel slices were excised, shredded in a bead beater, and the DNA was allowed to diffuse into sterile water overnight. The use of primers containing specific linkers allowed the entire amplified PCR product to be sequenced and then analyzed. The optimized 16S rRNA gene PCR-DGGE method was used to analyze 50 tissue biopsy samples chosen randomly from our collection. The results were compared to those of the Memorial Hermann Hospital Clinical Microbiology Laboratory for the same samples. The molecular method was congruent for 10 of the 17 (59%) culture negative tissue samples. In 7 of the 17 (41%) culture negative the molecular method identified a bacterium. The molecular method was congruent with the culture identification for 7 of the 33 (21%) positive cultured tissue samples. However, in 8 of the 33 (24%) the molecular method identified more organisms. In 13 of the 15 (87%) polymicrobial cultured tissue samples the molecular method identified at least one organism that was also identified by culture techniques. Overall, the DGGE analysis of 16S rDNA is an effective method to identify bacteria not identified by culture analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RNA polymerase I (Pol I) transcription in the yeast Saccharomyces cerevisiae is greatly stimulated in vivo and in vitro by the multiprotein complex, upstream activation factor (UAF). UAF binds tightly to the upstream element of the rDNA promoter, such that once bound (in vitro), UAF does not readily exchange onto a competing template. Of the polypeptides previously identified in purified UAF, three are encoded by genes required for Pol I transcription in vivo: RRN5, RRN9, and RRN10. Two others, p30 and p18, have remained uncharacterized. We report here that the N-terminal amino acid sequence, its mobility in gel electrophoresis, and the immunoreactivity of p18 shows that it is histone H3. In addition, histone H4 was found in UAF, and myc-tagged histone H4 could be used to affinity-purify UAF. Histones H2A and H2B were not detectable in UAF. These results suggest that histones H3 and H4 probably account for the strong binding of UAF to DNA and may offer a means by which general nuclear regulatory signals could be transmitted to Pol I.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis : C. parapsilosis sensu stricto, Candida orthopsilosis , and Candida metapsilosis . In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economical identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genus Passiflora L. consists of approximately 530 widely distributed species, including Passiflora edulis, which has drawn interest because of its commercial and agronomic value. Passiflora cincinnata is another important species owing to its long flowering period and resistance or tolerance to diseases and pests. In the present study, the meiotic segregation and pollen viability of an interspecific hybrid (P. edulis x P. cincinnata) and its parents were analyzed. The genomic contents were characterized using chromomycin A3 (CMA3)/40-60-diamidino-2-phenylindole (DAPI) staining, fluorescent in situ hybridization with 5S/45S ribosomal DNA (rDNA), genomic in situ hybridization (GISH), and inter-simple sequence repeat (ISSR) markers. The results indicated the diploid chromosome number for the parents and interspecific hybrid was 2n = 18. We also observed regular meiosis, one pair of S rDNA sites, and two pairs of 45S rDNA sites that colocalized with two pairs of CMA3 /DAPI- bands. The GISH data revealed three distinct chromosomal groups in the hybrid. The genetic origins of the interspecific hybrid, and its relationship with its parents were also confirmed using ISSR markers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The results showed that the neutral mine drainage caused changes in the composition and structure of the microbial community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part responsible for the differences between the communities, and was positively associated with the presence of copper and other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an important role in shaping the microbial population in mine environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IKK epsilon (IKKε) is induced by the activation of nuclear factor-κB (NF-κB). Whole-body IKKε knockout mice on a high-fat diet (HFD) were protected from insulin resistance and showed altered energy balance. We demonstrate that IKKε is expressed in neurons and is upregulated in the hypothalamus of obese mice, contributing to insulin and leptin resistance. Blocking IKKε in the hypothalamus of obese mice with CAYMAN10576 or small interfering RNA decreased NF-κB activation in this tissue, relieving the inflammatory environment. Inhibition of IKKε activity, but not TBK1, reduced IRS-1(Ser307) phosphorylation and insulin and leptin resistance by an improvement of the IR/IRS-1/Akt and JAK2/STAT3 pathways in the hypothalamus. These improvements were independent of body weight and food intake. Increased insulin and leptin action/signaling in the hypothalamus may contribute to a decrease in adiposity and hypophagia and an enhancement of energy expenditure accompanied by lower NPY and increased POMC mRNA levels. Improvement of hypothalamic insulin action decreases fasting glycemia, glycemia after pyruvate injection, and PEPCK protein expression in the liver of HFD-fed and db/db mice, suggesting a reduction in hepatic glucose production. We suggest that IKKε may be a key inflammatory mediator in the hypothalamus of obese mice, and its hypothalamic inhibition improves energy and glucose metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.