936 resultados para quantitative polymerase chain reaction
Resumo:
This paper presents a novel method for performing polymerase chain reaction (PCR) amplification by using spiral channel fabricated on copper where a transparent polytetrafluoroethylene ( PTFE) capillary tube was embedded. The channel with 25 PCR cycles was gradually developed in a spiral manner from inner to outer. The durations of PCR mixture at the denaturation, annealing and extension zones were gradually lengthened at a given flow rate, which may benefit continuous-flow PCR amplification as the synthesis ability of the Taq polymerase enzyme usually weakens with PCR time. Successful continuous-flow amplification of DNA fragments has been demonstrated. The PCR products of 249, 500 and 982 bp fragments could be obviously observed when the flow rates of PCR mixture were 7.5, 7.5 and 3.0 mm s(-1), respectively, and the required amplification times were about 25, 25, and 62 min, respectively. Besides, the successful segmented-flow PCR of three samples ( 249, 500 and 982 bp) has also been reported, which demonstrates the present continuous-flow PCR microfluidics can be developed for high-throughput genetic analysis.
Resumo:
We describe a new molecular approach to analyzing the genetic diversity of complex microbial populations. This technique is based on the separation of polymerase chain reaction-amplified fragments of genes coding for 16S rRNA, all the same length, by denaturing gradient gel electrophoresis (DGGE). DGGE analysis of different microbial communities demonstrated the presence of up to 10 distinguishable bands in the separation pattern, which were most likely derived from as many different species constituting these populations, and thereby generated a DGGE profile of the populations. We showed that it is possible to identify constituents which represent only 1% of the total population. With an oligonucleotide probe specific for the V3 region of 16S rRNA of sulfate-reducing bacteria, particular DNA fragments from some of the microbial populations could be identified by hybridization analysis. Analysis of the genomic DNA from a bacterial biofilm grown under aerobic conditions suggests that sulfate-reducing bacteria, despite their anaerobicity, were present in this environment. The results we obtained demonstrate that this technique will contribute to our understanding of the genetic diversity of uncharacterized microbial populations.
Resumo:
Background. Invasive Candida infection among nonneutropenic, critically ill adults is a clinical problem that has received increasing attention in recent years. Poor performance of extant diagnostic modalities has promoted risk-based, preemptive prescribing in view of the poor outcomes associated with inadequate or delayed antifungal therapy; this risks unnecessary overtreatment. A rapid, reliable diagnostic test could have a substantial impact on therapeutic practice in this patient population.
Methods. Three TaqMan-based real-time polymerase chain reaction assays were developed that are capable of detecting the main medically important Candida species, categorized according to the likelihood of fluconazole susceptibility. Assay 1 detected Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida dubliniensis. Assays 2 and 3 detected Candida glabrata and Candida krusei, respectively. The clinical performance of these assays, applied to serum, was evaluated in a prospective trial of nonneutropenic adults in a single intensive care unit.
Results. In all, 527 specimens were obtained from 157 participants. All 3 assays were run in parallel for each specimen; they could be completed within 1 working day. Of these, 23 specimens were obtained from 23 participants categorized as having proven Candida infection at the time of sampling. If a single episode of Candida famata candidemia was excluded, the estimated clinical sensitivity, specificity, and positive and negative predictive values of the assays in this trial were 90.9%, 100%, 100% and 99.8%, respectively.
Conclusions. These data suggest that the described assays perform well in this population for enhancing the diagnosis of candidemia. The extent to which they may affect clinical outcomes, prescribing practice, and cost-effectiveness of care remains to be ascertained.
Resumo:
The bacterium Coxiella burnetii, which has a wide host range, causes Q fever. Infection with C burnetii can cause abortions, stillbirth, and the delivery of weak offspring in ruminants. Coxiella burnetii infection is zoonotic, and in human beings it can cause chronic, potentially fatal disease. Real-time polymerase chain reaction (PCR) is increasingly being used to detect the organism and to aid in diagnosis both in human and animal cases. Many different real-time PCR methods, which target different genes, have been described. To assess the comparability of the C. burnetii real-time PCR assays in use in different European laboratories, a panel of nucleic acid extracts was dispatched to 7 separate testing centers. The testing centers included laboratories from both human and animal health agencies. Each laboratory tested the samples using their in-house real-time PCR methods. The results of this comparison show that the most common target gene for real-time PCR assays is the IS1111 repeat element that is present in multiple copies in the C. burnetii genome. Many laboratories also use additional real-time PCR tests that target single-copy genes. The results of the current study demonstrate that the assays in use in the different laboratories are comparable, with general agreement of results for the panel of samples.
Resumo:
A novel assay for the pan-serotypic detection of foot-and-mouth disease virus (FMDV) was designed using a 5' conjugated minor groove binder (MGB) probe real-time RT-PCR system. This assay targets the 3D region of the FMDV genome and is capable of detecting 20 copies of a transcribed RNA standard. The linear range of the test was eight logs from 2 x 10(1) to 2 x 10(8) copies and amplification time was approximately 2 h. Using a panel of 83 RNA samples from representative FMDV isolates, the diagnostic sensitivity of this test was shown to be equivalent to a TaqMan real-time RT-PCR that targets the 5' untranslated region of FMDV. Furthermore, the assay does not detect viruses causing similar clinical diseases in pigs such as swine vesicular disease virus and vesicular stomatitis virus, nor does it detect marine caliciviruses causing vesicular exanthema. The development of this assay provides a useful tool for the differential diagnosis of FMD, potentially for use in statutory or emergency testing programmes, or for detection of FMDV RNA in research applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Phenotypic identification of Gram-negative bacteria from respiratory specimens of patients with cystic fibrosis carries a high risk of misidentification. Molecular identification techniques that use single-gene targets are also susceptible to error, including cross-reaction issues with other Gram-negative organisms. In this study, we have designed a Pseudomonas aeruginosa duplex real-time polymerase chain reaction (PCR) (PAduplex) assay targeting the ecfX and the gyrB genes. The PAduplex was evaluated against a panel of 91 clinical and environmental isolates that were presumptively identified as P. aeruginosa. The results were compared with those obtained using a commercial biochemical identification kit and several other P. aeruginosa PCR assays. The results showed that the PAduplex assay is highly suitable for routine identification of P. aeruginosa isolates from clinical or environmental samples. The 2-target format provides simultaneous confirmation of P. aeruginosa identity where both the ecfX and gyrB PCR reactions are positive and may also reduce the potential for false negatives caused by sequence variation in primer or probe targets.
Resumo:
Background: There is growing interest in the potential utility of real-time polymerase chain reaction (PCR) in diagnosing bloodstream infection by detecting pathogen deoxyribonucleic acid (DNA) in blood samples within a few hours. SeptiFast (Roche Diagnostics GmBH, Mannheim, Germany) is a multipathogen probe-based system targeting ribosomal DNA sequences of bacteria and fungi. It detects and identifies the commonest pathogens causing bloodstream infection. As background to this study, we report a systematic review of Phase III diagnostic accuracy studies of SeptiFast, which reveals uncertainty about its likely clinical utility based on widespread evidence of deficiencies in study design and reporting with a high risk of bias.
Objective: Determine the accuracy of SeptiFast real-time PCR for the detection of health-care-associated bloodstream infection, against standard microbiological culture.
Design: Prospective multicentre Phase III clinical diagnostic accuracy study using the standards for the reporting of diagnostic accuracy studies criteria.
Setting: Critical care departments within NHS hospitals in the north-west of England.
Participants: Adult patients requiring blood culture (BC) when developing new signs of systemic inflammation.
Main outcome measures: SeptiFast real-time PCR results at species/genus level compared with microbiological culture in association with independent adjudication of infection. Metrics of diagnostic accuracy were derived including sensitivity, specificity, likelihood ratios and predictive values, with their 95% confidence intervals (CIs). Latent class analysis was used to explore the diagnostic performance of culture as a reference standard.
Results: Of 1006 new patient episodes of systemic inflammation in 853 patients, 922 (92%) met the inclusion criteria and provided sufficient information for analysis. Index test assay failure occurred on 69 (7%) occasions. Adult patients had been exposed to a median of 8 days (interquartile range 4–16 days) of hospital care, had high levels of organ support activities and recent antibiotic exposure. SeptiFast real-time PCR, when compared with culture-proven bloodstream infection at species/genus level, had better specificity (85.8%, 95% CI 83.3% to 88.1%) than sensitivity (50%, 95% CI 39.1% to 60.8%). When compared with pooled diagnostic metrics derived from our systematic review, our clinical study revealed lower test accuracy of SeptiFast real-time PCR, mainly as a result of low diagnostic sensitivity. There was a low prevalence of BC-proven pathogens in these patients (9.2%, 95% CI 7.4% to 11.2%) such that the post-test probabilities of both a positive (26.3%, 95% CI 19.8% to 33.7%) and a negative SeptiFast test (5.6%, 95% CI 4.1% to 7.4%) indicate the potential limitations of this technology in the diagnosis of bloodstream infection. However, latent class analysis indicates that BC has a low sensitivity, questioning its relevance as a reference test in this setting. Using this analysis approach, the sensitivity of the SeptiFast test was low but also appeared significantly better than BC. Blood samples identified as positive by either culture or SeptiFast real-time PCR were associated with a high probability (> 95%) of infection, indicating higher diagnostic rule-in utility than was apparent using conventional analyses of diagnostic accuracy.
Conclusion: SeptiFast real-time PCR on blood samples may have rapid rule-in utility for the diagnosis of health-care-associated bloodstream infection but the lack of sensitivity is a significant limiting factor. Innovations aimed at improved diagnostic sensitivity of real-time PCR in this setting are urgently required. Future work recommendations include technology developments to improve the efficiency of pathogen DNA extraction and the capacity to detect a much broader range of pathogens and drug resistance genes and the application of new statistical approaches able to more reliably assess test performance in situation where the reference standard (e.g. blood culture in the setting of high antimicrobial use) is prone to error.