997 resultados para publication rates
Resumo:
The effect of different microstructures on the polarization resistance (Rp) and the hydrogen-induced cracking (HIC) of a micro-alloyed steel austenitized and submitted to different cooling rates was studied. Samples 19.1 x 6 x 2 mm, containing the whole thickness of the plate were extracted from a 20 mm plate and heat treated on a quenching dilatometer, were submitted to Rp and HIC corrosion tests. Both Rp and HIC tests followed as close as possible ASTM G59 and NACE standard TM0284-2003, in this case, modified only with regard to the size of the samples. Steel samples transformed from austenite by a slow cooling (cooling rate of 0.5 degrees C.s(-1)) showed higher susceptibility to hydrogen-induced cracking, with large cracks in the middle of the sample propagating along segregation bands, corresponding to the centerline of the plate thickness. For cooling rates of 10 degrees C.s(-1), only small cracks were found in the matrix and micro cracks nucleated at non-metallic inclusions. For higher cooling rates (40 degrees C.s(-1)) very few small cracks were detected, linked to non-metallic inclusions. This result suggests that structures formed by polygonal structures and segregation bands (were cutectoid microconstituents predominate) have higher susceptibility to HIC. Structures predominantly formed by acicular ferrite make it difficult to propagate the cracks among non-oriented and interlaced acicular ferrite crystals. Smaller segregation bands containing eutectoid products also help inhibit cracking and crack propagation; segregation bands can function as pipelines for hydrogen diffusion and offer a path of stress concentration for the propagation of cracks, frequently associated to non-metallic inclusions. Polarization resistance essays performed on the steel in theas received condition, prior to any heat treatment, showed larger differences between the regions of the plate, with a considerably lower Rp in the centerline. The austenitization heat treatments followed by cooling rates of 0.5 e 10 degrees C.s(-1) made more uniform the corrosion resistance along the thickness of the plate. The effects of heat treatments on the corrosion resistance are probably related to the microconstituent formed, allied to the chemical homogenization of the impurities concentrated on the centerline of the plate.
Resumo:
BACKGROUND: Glyphosate is used to control weeds in citrus orchards, and accidental spraying or wind drift onto the seedlings may cause growth arrest owing to metabolism disturbance. Two experiments were carried out to investigate the effect of non-lethal rates (0, 180, 360 and 720 g Al ha(-1)) of glyphosate on four-month-old `Cravo` lime, Citrus limonia (L.) Osbeck, seedlings. Photosynthesis and the concentrations of shikimic acid, total free amino acids and phenolic acids were evaluated. RESULTS: Only transitory effects were observed in the! contents of shikimate and total free amino acids. No visual effects were observed. CONCLUSION: The present study showed that glyphosate at non-lethal rates, which is very usual when accidental spraying or wind drift occurs in citrus orchard, did not cause severe metabolic damage in `Cravo` lime seedlings. (C) 2009 Society of Chemical Industry
Resumo:
The acidification rates of Lactobacillus delbrueckii subsp. bulgarieus (Lb), Lactobacillus acidophilus (La), Lactobacillus rhamnosus (Lr), and Bifidobacterium animalis subsp. lactis (Bl) in co-culture with Streptococcus thermophilus (St) were studied in Minas frescal cheese whey. Effects of the co-culture composition and the final pH values on the kinetic parameters of acidification, post-acidification and counts of health promoting micro-organisms were also studied. Fermentation time to reach pH 4.5 was longer when St-Lr co-culture was used, while St-Lb had the shortest fermentation time when compared with the other co-culture combinations. All products showed development of acidity during the storage period and lowest values had been observed employing St-Bl co-culture. The technological interest of using M. frescal cheese whey for the production of a probiotic lactic beverage is discussed in this article. (C) 2007 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this work, we disrupted one of three putative phosphatidylinositol phospholipase C genes of Aspergillus nidulans and studied its effect on carbon source sensing linked to vegetative mitotic nuclear division. We showed that glucose does not affect nuclear division rates during early vegetative conidial germination (6-7 h) in either the wild type or the plcA-deficient mutant. Only after 8 h of cultivation on glucose did the mutant strain present some decrease in nuclear duplication. However, decreased nuclear division rates were observed in the wild type when cultivated in media amended with polypectate, whereas our plcA-deficient mutant did not show slow nuclear duplication rates when grown on this carbon source, even though it requires induction and secretion of multiple pectinolytic enzymes to be metabolized. Thus, plcA appears to be directly linked to high-molecular-weight carbon source sensing.
Resumo:
This study aims to evaluate the feasibility of using simple techniques - pollen abortion rates, passive diffusive tubes (NO(2)) and trace element accumulation in tree barks - when determining the area of influence of pollution emissions produced in a traffic corridor. Measurements were performed at 0, 60 and 120 meters from a major road with high vehicular traffic, taking advantage of a sharp gradient that exists between the road and a cemetery. NO(2) values and trace elements measured at 0 meters were significantly higher than those measured at more distant points. Al, S. Cl, V. Fe, Cu, and Zn exhibited a higher concentration in tree barks at the vicinity of the traffic corridor. The same pattern was observed for the pollen abortion rates measured at the three different sites. Our data suggests that simple techniques may be applied either to validate dispersion land-based models in an urban settings or, alternatively, to provide better spatial resolution to air pollution exposure when high-resolution pollution monitoring data are not available. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The Direct Simulation Monte Carlo (DSMC) method is used to simulate the flow of rarefied gases. In the Macroscopic Chemistry Method (MCM) for DSMC, chemical reaction rates calculated from local macroscopic flow properties are enforced in each cell. Unlike the standard total collision energy (TCE) chemistry model for DSMC, the new method is not restricted to an Arrhenius form of the reaction rate coefficient, nor is it restricted to a collision cross-section which yields a simple power-law viscosity. For reaction rates of interest in aerospace applications, chemically reacting collisions are generally infrequent events and, as such, local equilibrium conditions are established before a significant number of chemical reactions occur. Hence, the reaction rates which have been used in MCM have been calculated from the reaction rate data which are expected to be correct only for conditions of thermal equilibrium. Here we consider artificially high reaction rates so that the fraction of reacting collisions is not small and propose a simple method of estimating the rates of chemical reactions which can be used in the Macroscopic Chemistry Method in both equilibrium and non-equilibrium conditions. Two tests are presented: (1) The dissociation rates under conditions of thermal non-equilibrium are determined from a zero-dimensional Monte-Carlo sampling procedure which simulates ‘intra-modal’ non-equilibrium; that is, equilibrium distributions in each of the translational, rotational and vibrational modes but with different temperatures for each mode; (2) The 2-D hypersonic flow of molecular oxygen over a vertical plate at Mach 30 is calculated. In both cases the new method produces results in close agreement with those given by the standard TCE model in the same highly nonequilibrium conditions. We conclude that the general method of estimating the non-equilibrium reaction rate is a simple means by which information contained within non-equilibrium distribution functions predicted by the DSMC method can be included in the Macroscopic Chemistry Method.
Resumo:
We investigate the role of information in the internationalization of small and medium enterprises (SMEs). Information internalization is fundamentally antecedent to SME internationalization and is being facilitated increasingly by recent important trends. We offer a conceptual explanation and related propositions on information internalization, emphasizing hurdle rate theory for ascertaining the acceptability of firms' internationalization projects.
Resumo:
Background From the mid-1980s to mid-1990s, the WHO MONICA Project monitored coronary events and classic risk factors for coronary heart disease (CHD) in 38 populations from 21 countries. We assessed the extent to which changes in these risk factors explain the variation in the trends in coronary-event rates across the populations. Methods In men and women aged 35-64 years, non-fatal myocardial infarction and coronary deaths were registered continuously to assess trends in rates of coronary events. We carried out population surveys to estimate trends in risk factors. Trends in event rates were regressed on trends in risk score and in individual risk factors. Findings Smoking rates decreased in most male populations but trends were mixed in women; mean blood pressures and cholesterol concentrations decreased, body-mass index increased, and overall risk scores and coronary-event rates decreased. The model of trends in 10-year coronary-event rates against risk scores and single risk factors showed a poor fit, but this was improved with a 4-year time lag for coronary events. The explanatory power of the analyses was limited by imprecision of the estimates and homogeneity of trends in the study populations. Interpretation Changes in the classic risk factors seem to partly explain the variation in population trends in CHD. Residual variance is attributable to difficulties in measurement and analysis, including time lag, and to factors that were not included, such as medical interventions. The results support prevention policies based on the classic risk factors but suggest potential for prevention beyond these.
Resumo:
Objective: To compare secular trends in method-specific suicide rates among young people in Australia and England & Wales between 1968 and 1997. Methods: Australian data were obtained from the Australian Bureau of Statistics, and for England & Wales from the Office for National Statistics. Overall and method-specific suicide rates for 15-34 year old males and females were calculated using ICD codes E950-9 and E980-9 except E988.8. Results: In both settings, suicide rates have almost doubled in young males over the past 30 years (from 16.8 to 32.9 per 100,000 in Australia and from 10.1 to 19.0 in England & Wales). Overall rates have changed little in young females. In both sexes and in both settings there have been substantial increases in suicide by hanging (5-7 fold increase in Australia and four-fold increase in England & Wales). There have also been smaller increases in gassing in the 1980s and '90s. In females, the impact of these increases on overall rates has been offset by a decline in drug overdose, the most common method in females. Conclusions: Rates of male suicide have increased substantially in both settings in recent years, and hanging has become an increasingly common method of suicide. The similarity in observed trends in both settings supports the view that such changes may have common causes. Research should focus on understanding why hanging has increased in popularity and what measures may be taken to diminish it.
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.
Resumo:
We investigate the internal dynamics of two cellular automaton models with heterogeneous strength fields and differing nearest neighbour laws. One model is a crack-like automaton, transferring ail stress from a rupture zone to the surroundings. The other automaton is a partial stress drop automaton, transferring only a fraction of the stress within a rupture zone to the surroundings. To study evolution of stress, the mean spectral density. f(k(r)) of a stress deficit held is: examined prior to, and immediately following ruptures in both models. Both models display a power-law relationship between f(k(r)) and spatial wavenumber (k(r)) of the form f(k(r)) similar tok(r)(-beta). In the crack model, the evolution of stress deficit is consistent with cyclic approach to, and retreat from a critical state in which large events occur. The approach to criticality is driven by tectonic loading. Short-range stress transfer in the model does not affect the approach to criticality of broad regions in the model. The evolution of stress deficit in the partial stress drop model is consistent with small fluctuations about a mean state of high stress, behaviour indicative of a self-organised critical system. Despite statistics similar to natural earthquakes these simplified models lack a physical basis. physically motivated models of earthquakes also display dynamical complexity similar to that of a critical point system. Studies of dynamical complexity in physical models of earthquakes may lead to advancement towards a physical theory for earthquakes.
Resumo:
Background The aim of this study was to study ecological correlations between age-adjusted all-cause mortality rates in Australian statistical divisions and (1) the proportion of residents that self-identify as Indigenous, (2) remoteness, and (3) socio-economic deprivation. Methods All-cause mortality rates for 57 statistical divisions were calculated and directly standardized to the 1997 Australian population in 5-year age groups using Australian Bureau of Statistics (ABS) data. The proportion of residents who self-identified as Indigenous was obtained from the 1996 Census. Remoteness was measured using ARIA (Accessibility and Remoteness Index for Australia) values. Socioeconomic deprivation was measured using SEIFA (Socio-Economic index for Australia) values from the ABS. Results Age-standardized all-cause mortality varies twofold from 5.7 to 11.3 per 1000 across Australian statistical divisions. Strongest correlation was between Indigenous status and mortality (r = 0.69, p < 0.001). correlation between remoteness and mortality was modest (r = 0.39, p = 0.002) as was correlation between socio-economic deprivation and mortality (r = -0.42, p = 0.001). Excluding the three divisions with the highest mortality, a multiple regression model using the logarithm of the adjusted mortality rate as the dependent variable showed that the partial correlation (and hence proportion of the variance explained) for Indigenous status was 0.03 (9 per cent; p = 0.03), for SEIFA score was -0.17 (3 per cent; p = 0.22); and for remoteness was -0.22 (5 per cent; p = 0.13). Collectively, the three variables studied explain 13 per cent of the variability in mortality. Conclusions Ecological correlation exists between all-cause mortality, Indigenous status, remoteness and disadvantage across Australia. The strongest correlation is with indigenous status, and correlation with all three characteristics is weak when the three statistical divisions with the highest mortality rates are excluded. intervention targeted at these three statistical divisions could reduce much of the variability in mortality in Australia.