990 resultados para protein NMR


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A newly implemented G-matrix Fourier transform (GFT) (4,3)D HC(C)CH experiment is presented in conjunction with (4,3)D HCCH to efficiently identify H-1/C-13 sugar spin systems in C-13 labeled nucleic acids. This experiment enables rapid collection of highly resolved relay 4D HC(C)CH spectral information, that is, shift correlations of C-13-H-1 groups separated by two carbon bonds. For RNA, (4,3)D HC(C)CH takes advantage of the comparably favorable 1'- and 3'-CH signal dispersion for complete spin system identification including 5'-CH. The (4,3)D HC(C)CH/HCCH based strategy is exemplified for the 30-nucleotide 3'-untranslated region of the pre-mRNA of human U1A protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network theory applied to protein structures provides insights into numerous problems of biological relevance. The explosion in structural data available from PDB and simulations establishes a need to introduce a standalone-efficient program that assembles network concepts/parameters under one hood in an automated manner. Herein, we discuss the development/application of an exhaustive, user-friendly, standalone program package named PSN-Ensemble, which can handle structural ensembles generated through molecular dynamics (MD) simulation/NMR studies or from multiple X-ray structures. The novelty in network construction lies in the explicit consideration of side-chain interactions among amino acids. The program evaluates network parameters dealing with topological organization and long-range allosteric communication. The introduction of a flexible weighing scheme in terms of residue pairwise cross-correlation/interaction energy in PSN-Ensemble brings in dynamical/chemical knowledge into the network representation. Also, the results are mapped on a graphical display of the structure, allowing an easy access of network analysis to a general biological community. The potential of PSN-Ensemble toward examining structural ensemble is exemplified using MD trajectories of an ubiquitin-conjugating enzyme (UbcH5b). Furthermore, insights derived from network parameters evaluated using PSN-Ensemble for single-static structures of active/inactive states of 2-adrenergic receptor and the ternary tRNA complexes of tyrosyl tRNA synthetases (from organisms across kingdoms) are discussed. PSN-Ensemble is freely available from http://vishgraph.mbu.iisc.ernet.in/PSN-Ensemble/psn_index.html.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conformational changes in proteins are extremely important for their biochemical functions. Correlation between inherent conformational variations in a protein and conformational differences in its homologues of known structure is still unclear. In this study, we have used a structural alphabet called Protein Blocks (PBs). PBs are used to perform abstraction of protein 3-D structures into a 1-D strings of 16 alphabets (a-p) based on dihedral angles of overlapping pentapeptides. We have analyzed the variations in local conformations in terms of PBs represented in the ensembles of 801 protein structures determined using NMR spectroscopy. In the analysis of concatenated data over all the residues in all the NMR ensembles, we observe that the overall nature of inherent local structural variations in NMR ensembles is similar to the nature of local structural differences in homologous proteins with a high correlation coefficient of .94. High correlation at the alignment positions corresponding to helical and beta-sheet regions is only expected. However, the correlation coefficient by considering only the loop regions is also quite high (.91). Surprisingly, segregated position-wise analysis shows that this high correlation does not hold true to loop regions at the structurally equivalent positions in NMR ensembles and their homologues of known structure. This suggests that the general nature of local structural changes is unique; however most of the local structural variations in loop regions of NMR ensembles do not correlate to their local structural differences at structurally equivalent positions in homologues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, silver nanoparticles (AgNPs) have attracted significant attention owing to their unique physicochemical, optical, conductive and antimicrobial properties. One of the properties of AgNPs which is crucial for all applications is their stability. In the present study we unravel a mechanism through which silver nanoparticles are rendered ultrastable in an aqueous solution in complex with the protein ubiquitin (Ubq). This involves a dynamic and reversible association and dissociation of ubiquitin from the surface of AgNP. The exchange occurs at a rate much greater than 25 s(-1) implying a residence time of <40 ms for the protein. The AgNP-Ubq complex remains stable for months due to steric stabilization over a wide pH range compared to unconjugated AgNPs. NMR studies reveal that the protein molecules bind reversibly to AgNP with an approximate dissociation constant of 55 mu M and undergo fast exchange. At pH > 4 the positively charged surface of the protein comes in contact with the citrate capped AgNP surface. Further, NMR relaxation-based experiments suggest that in addition to the dynamic exchange, a conformational rearrangement of the protein takes place upon binding to AgNP. The ultrastability of the AgNP-Ubq complex was found to be useful for its anti-microbial activity, which allowed the recycling of this complex multiple times without the loss of stability. Altogether, the study provides new insights into the mechanism of protein-silver nanoparticle interactions and opens up new avenues for its application in a wide range of systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genome of Leishmania major encodes a type II fatty acid biosynthesis pathway for which no structural or biochemical information exists. Here, for the first time, we have characterized the central player of the pathway, the acyl carrier protein (LmACP), using nuclear magnetic resonance (NMR). Structurally, the LmACP molecule is similar to other type II ACPs, comprising a four-helix bundle, enclosing a hydrophobic core. Dissimilarities in sequence, however, exist in helix II (recognition helix) of the protein. The enzymatic conversion of apo-LmACP into the holo form using type I (Escherichia coli AcpS) and type II (Sfp type) phosphopantetheinyl transferases (PPTs) is relatively slow. Mutagenesis studies underscore the importance of the residues present at the protein protein interaction interface of LmACP in modulating the activity of PPTs. Interestingly, the cognate PPT for this ACP, the L. major 4'-phosphopantetheinyl transferase (LmPPT), does not show any enzymatic activity toward it, though it readily converts other type I and type II ACPs into their holo forms. NMR chemical shift perturbation studies suggest a moderately tight complex between LmACP and its cognate PPT, suggesting inhibition. We surmise that the unique surface of LmACP might have evolved to complement its cognate enzyme (LmPPT), possibly for the purpose of regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach for rapid resonance assignments in proteins based on amino acid selective unlabeling is presented. The method involves choosing a set of multiple amino acid types for selective unlabeling and identifying specific tripeptides surrounding the labeled residues from specific 2D NMR spectra in a combinatorial manner. The methodology directly yields sequence specific assignments, without requiring a contiguously stretch of amino acid residues to be linked, and is applicable to deuterated proteins. We show that a 2D N-15,H-1]HSQC spectrum with two 2D spectra can result in approximate to 50% assignments. The methodology was applied to two proteins: an intrinsically disordered protein (12kDa) and the 29kDa (268 residue) -subunit of Escherichia coli tryptophan synthase, which presents a challenging case with spectral overlaps and missing peaks. The method can augment existing approaches and will be useful for applications such as identifying active-site residues involved in ligand binding, phosphorylation, or protein-protein interactions, even prior to complete resonance assignments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identification of residue-residue contacts from primary sequence can be used to guide protein structure prediction. Using Escherichia coli CcdB as the test case, we describe an experimental method termed saturation-suppressor mutagenesis to acquire residue contact information. In this methodology, for each of five inactive CcdB mutants, exhaustive screens for suppressors were performed. Proximal suppressors were accurately discriminated from distal suppressors based on their phenotypes when present as single mutants. Experimentally identified putative proximal pairs formed spatial constraints to recover >98% of native-like models of CcdB from a decoy dataset. Suppressor methodology was also applied to the integral membrane protein, diacylglycerol kinase A where the structures determined by X-ray crystallography and NMR were significantly different. Suppressor as well as sequence co-variation data clearly point to the Xray structure being the functional one adopted in vivo. The methodology is applicable to any macromolecular system for which a convenient phenotypic assay exists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cooperative director fluctuations in lipid bilayers have been postulated for many years. ^2H-NMR T_1^(-1), T_(1P)^(-1) , and T_2^(-1); measurements have been used identify these motions and to determine the origin of increased slow bilayer motion upon addition of unlike lipids or proteins to a pure lipid bilayer.

The contribution of cooperative director fluctuations to NMR relaxation in lipid bilayers has been expressed mathematically using the approach of Doane et al.^1 and Pace and Chan.^2 The T_2^(-1)’s of pure dimyristoyllecithin (DML) bilayers deuterated at the 2, 9 and 10, and all positions on both lipid hydrocarbon chains have been measured. Several characteristics of these measurements indicate the presence of cooperative director fluctuations. First of all, T_2^(-1) exhibits a linear dependence on S2/CD. Secondly, T_2^(-1) varies across the ^2H-NMR powder pattern as sin^2 (2, β), where , β is the angle between the average bilayer director and the external magnetic field. Furthermore, these fluctuations are restricted near the lecithin head group suggesting that the head group does not participate in these motions but, rather, anchors the hydrocarbon chains in the bilayer.

T_2^(-1)has been measured for selectively deuterated liquid crystalline DML hilayers to which a host of other lipids and proteins have been added. The T_2^(-1) of the DML bilayer is found to increase drastically when chlorophyll a (chl a) and Gramicidin A' (GA') are added to the bilayer. Both these molecules interfere with the lecithin head group spacing in the bilayer. Molecules such as myristic acid, distearoyllecithin (DSL), phytol, and cholesterol, whose hydrocarbon regions are quite different from DML but which have small,neutral polar head groups, leave cooperative fluctuations in the DML bilayer unchanged.

The effect of chl a on cooperative fluctuations in the DML bilayer has been examined in detail using ^2H-NMR T_1^(-1), T_(1P)^(-1) , and T_2^(-1); measurements. Cooperative fluctuations have been modelled using the continuum theory of the nematic state of liquid crystals. Chl a is found to decrease both the correlation length and the elastic constants in the DML bilayer.

A mismatch between the hydrophobic length of a lipid bilayer and that of an added protein has also been found to change the cooperative properties of the lecithin bilayer. Hydrophobic mismatch has been studied in a series GA' / lecithin bilayers. The dependence of 2H-NMR order parameters and relaxation rates on GA' concentration has been measured in selectively deuterated DML, dipalmitoyllecithin (DPL), and DSL systems. Order parameters, cooperative lengths, and elastic constants of the DML bilayer are most disrupted by GA', while the DSL bilayer is the least perturbed by GA'. Thus, it is concluded that the hydrophobic length of GA' best matches that of the DSL bilayer. Preliminary Raman spectroscopy and Differential Scanning Calorimetry experiments of GA' /lecithin systems support this conclusion. Accommodation of hydrophobic mismatch is used to rationalize the absence of H_(II) phase formation in GA' /DML systems and the observation of H_(II) phase in GA' /DPL and GA' /DSL systems.

1. J. W. Doane and D. L. Johnson, Chem. Phy3. Lett., 6, 291-295 (1970). 2. R. J. Pace and S. I. Chan, J. Chem. Phy3., 16, 4217-4227 (1982).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reconstruction of an image from a set of projections has been adapted to generate multidimensional nuclear magnetic resonance (NMR) spectra, which have discrete features that are relatively sparsely distributed in space. For this reason, a reliable reconstruction can be made from a small number of projections. This new concept is called Projection Reconstruction NMR (PR-NMR). In this paper, multidimensional NMR spectra are reconstructed by Reversible Jump Markov Chain Monte Carlo (RJMCMC). This statistical method generates samples under the assumption that each peak consists of a small number of parameters: position of peak centres, peak amplitude, and peak width. In order to find the number of peaks and shape, RJMCMC has several moves: birth, death, merge, split, and invariant updating. The reconstruction schemes are tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable gadolinium complexes, such as Gd(DTPA) and Gd(DOTA), are usually used as the contrast agents for magnetic resonance imaging(MRI). Reported here are the enhanced relaxation properties of a novel gadolinium complex, diethylene-triaminopentaacetate Lis (isoniazid) [Gd(DTPA-BIN)], in aqueous and in human serum albumin(HSA) solution, which indicates that (1) two Gd(DTPA-BIN) can integrate non-covalently with one HSA with an equilibrium constant of 0. 02 mmol(-2) . L-2 ; (2) the relaxivities are 3. 28 and 4. 92 mmol(-1) . L . s(-1) for the free Gd(DTPA-BIN) and the [Gd(DTPA-BIN)](2), HSA conjugator, respectively; (3) the rotational correlation time of protein conjugator is notably higher than that of the free complex, The above results may imply that Gd(DTPA-BIN) has a higher tissue selectivity than that of its parent Gd(DTPA).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human alpha-lactalbumin (alpha-LA), a 123-residue calcium-binding protein, has been studied using (15)N NMR relaxation methods in order to characterize backbone dynamics of the native state at the level of individual residues. Relaxation data were collected at three magnetic field strengths and analyzed using the model-free formalism of Lipari and Szabo. The order parameters derived from this analysis are generally high, indicating a rigid backbone. A total of 46 residues required an exchange contribution to T(2); 43 of these residues are located in the alpha-domain of the protein. The largest exchange contributions are observed in the A-, B-, D-, and C-terminal 3(10)-helices of the alpha-domain; these residues have been shown previously to form a highly stable core in the alpha-LA molten globule. The observed exchange broadening, along with previous hydrogen/deuterium amide exchange data, suggests that this part of the alpha-domain may undergo a local structural transition between the well-ordered native structure and a less-ordered molten-globule-like structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The second round of the community-wide initiative Critical Assessment of automated Structure Determination of Proteins by NMR (CASD-NMR-2013) comprised ten blind target datasets, consisting of unprocessed spectral data, assigned chemical shift lists and unassigned NOESY peak and RDC lists, that were made available in both curated (i.e. manually refined) or un-curated (i.e. automatically generated) form. Ten structure calculation programs, using fully automated protocols only, generated a total of 164 three-dimensional structures (entries) for the ten targets, sometimes using both curated and un-curated lists to generate multiple entries for a single target. The accuracy of the entries could be established by comparing them to the corresponding manually solved structure of each target, which was not available at the time the data were provided. Across the entire data set, 71 % of all entries submitted achieved an accuracy relative to the reference NMR structure better than 1.5 Å. Methods based on NOESY peak lists achieved even better results with up to 100 % of the entries within the 1.5 Å threshold for some programs. However, some methods did not converge for some targets using un-curated NOESY peak lists. Over 90 % of the entries achieved an accuracy better than the more relaxed threshold of 2.5 Å that was used in the previous CASD-NMR-2010 round. Comparisons between entries generated with un-curated versus curated peaks show only marginal improvements for the latter in those cases where both calculations converged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contrary to the traditional view, recent studies suggest that diabetes mellitus has an adverse influence on male reproductive function. Our aim was to determine the affect of diabetes on the testicular environment by identifying and then assessing perturbations in small molecule metabolites. Testes were obtained from control and streptozotocin induced diabetic C57BL/6 mice, two, four and eight weeks post treatment. Diabetic status was confirmed by HbA1c, non fasting blood glucose, physiological condition and body weight. Protein free, low molecular weight, water soluble extracts were assessed using 1H NMR spectroscopy. Principal Component Analysis of the derived profiles was used to classify any variations and specific metabolites were identified based on their spectral pattern. Characteristic metabolite profiles were identified for control and diabetic animals with the most distinctive being from mice with the greatest physical deterioration and loss of bodyweight. Eight streptozotocin treated animals did not develop diabetes and displayed profiles similar to controls. Diabetic mice had decreases in creatine, choline and carnitine and increases in lactate, alanine and myo-inositol. Betaine levels were found to be increased in the majority of diabetic mice but decreased in two animals with severe loss of body weight and physical condition. The association between perturbations in a number of small molecule metabolites known to be influential in sperm function, with diabetic status and physiological condition, adds further impetus to the proposal that diabetes influences important spermatogenic pathways and mechanisms in a subtle and previously unrecognised manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cholecystokinin-1 receptor (CCK1R) mediates actions of CCK in areas of the central nervous system and of the gut. It is a potential target to treat a number of diseases. As for all G-protein-coupled receptors, docking of ligands into modeled CCK1R binding site should greatly help to understand intrinsic mechanisms of activation. Here, we describe the procedure we used to progressively build a structural model for the CCK1R, to integrated, and on the basis of site-directed mutagenesis data on its binding site. Reliability of the CCK1R model was confirmed by interaction networks that involved conserved and functionally crucial motifs in G-protein-coupled receptors, such as Glu/Asp-Arg-Tyr and Asn-Pro-Xaa-Xaa-Tyr motifs. In addition, the 3-D structure of CCK1R-bound CCK resembled that determined by NMR in a lipid environment. The derived computational model was also used for revealing binding modes of several nonpeptide ligands and for rationalizing ligand structure-activity relationships known from experiments. Our findings indeed support that our "validated CCK1R model" could be used to study the intrinsic mechanism of CCK1R activation and design new ligands.