978 resultados para program structure
Resumo:
China's market-oriented labor market reform has been in place for about one and a half decades. This study uses individual data for 1981 and 1987 to examine the success of the first half of the reform program. Success is evaluated by examining changes in the wage setting structure in the state-owned sector over the reform period. Have the market reforms stimulated worker incentives by increasing the returns to human capital acquisition? Has the wage structure altered to more closely mimic that of a market economy? In 1987, there is evidence of a structural change in the system of wage determination, with slightly increased rates of return to human capital. However, changes in industrial wage differentials appear to play the dominant role. It is argued that this may be due to labor market reforms, in particular the introduction of the profit related bonus scheme.J. Comp. Econom.,December 1997,25(3), pp. 403–421. Australian National University, Canberra, ACT0200, Australia and University of Tasmania, Hobart, Tasmania, Australia, and University of Aberdeen, Old Aberdeen, Scotland AB24 3QY.
Resumo:
The Pattern and Structure Mathematics Awareness Program (PASMAP) was developed concurrently with the studies of AMPS and the development of the Pattern and Structure Assessment (PASA) interview. We summarize some early classroom-based teaching studies and describe the PASMAP that resulted. A large-scale two-year longitudinal study, Reconceptualizing Early Mathematics Learning (REML) resulted. We provide an overview of the REML study and discuss the consequences for our view of early mathematics learning. A purposive sample of four large primary schools, two in Sydney and two in Brisbane, representing 316 students from diverse socio-economic and cultural contexts, participated in an evaluation of the PASMAP intervention throughout the 2009 school year and a follow-up assessment in 2010. Two different mathematics programs were implemented: in each school, two Kindergarten teachers implemented the PASMAP and another two implemented their regular program. The study shows that both groups of students made substantial gains on the ‘I Can Do Maths’ standardized assessment and the PASA interview, but highly significant differences were found on the latter with PASMAP students outperforming the regular group on PASA scores. Qualitative analysis of students’ responses for structural development showed increased levels for the PASMAP students. Implications for pedagogy and curriculum are discussed.
Resumo:
Introduction The professional doctorate is specifically designed for professionals investigating real-world problems and relevant issues for a profession, industry, and/or the community. The focus is scholarly research into professional practices. The research programme bridges academia and the professions, and offers doctoral candidates the opportunity to investigate issues relevant to their own practices and to apply these understandings to their professional contexts. The study on which this article is based sought to track the scholarly skill development of a cohort of professional doctoral students who commenced the course in January 2008 at an Australian university. Because they hold positions of responsibility and are time-poor, many doctoral students have difficulty transitioning from professional practitioner to researcher and scholar. The struggle many experience is in the development of a theoretical or conceptual standpoint for argumentation (Lesham, 2007; Weese et al., 1999). It was thought that the use of a scaffolded learning environment that drew upon a blended learning approach incorporating face to face intensive blocks and collaborative knowledge-building tools such as wikis would provide a data source for understanding the development of scholarly skills. Wikis, weblogs and similar social networking software have the potential to support communities to share, learn, create and collaborate. The development of a wiki page by each candidate in the 2008 cohort was encouraged to provide the participants and the teaching team members with textual indicators of progress. Learning tasks were scaffolded with the expectation that the candidates would complete these tasks via the wikis. The expectation was that cohort members would comment on each other’s work, together with the supervisor and/or teaching team member who was allocated to each candidate. The supervisor is responsible for supervising the candidate’s work through to submission of the thesis for examination and the teaching team member provides support to both the supervisor and the candidate through to confirmation. This paper reports on the learning journey of a cohort of doctoral students during the first seven months of their professional doctoral programme to determine if there had been any qualitative shifts in understandings, expectations and perceptions regarding their developing knowledge and skills. The paper is grounded in the literature pertaining to doctoral studies and examines the structure of the professional doctoral programme. Following this is a discussion of the qualitative study that helped to unearth key themes regarding the participants’ learning journey.
Resumo:
This thesis used experimental and qualitative methods to determine that a typical, formal library leadership development intervention significantly enhanced the leadership self-efficacy of participants. The investigation also ascertained what program content and attributes affected leadership self-efficacy and how these elements either deterred or enhanced leadership self-efficacy development. Self-efficacy is critical to leadership emergence and effectiveness. Leadership succession has been identified as an issue in the library profession and society as a whole. The research confirmed that leadership development interventions with appropriate structure and content can be an effective mechanism to foster the emergence of leaders.
Resumo:
To prepare for the delivery of new Bachelor of Science units in collaborative learning spaces, academic and professional staff at Queensland University of Technology piloted an academic development program over the period of a semester. The program was informed by Rogers’ theory of innovation and diffusion (2003) and structured according to Wilson’s framework for faculty development (2007). Through a series of workshops and group mentoring activities, the program modelled inquiry-based learning in a collaborative learning space, and the participants designed and practiced the delivery of teaching activities. This paper provides a preliminary evaluation of the effectiveness of the pilot based on survey responses from participants, notes from the development team who coordinated the program and audience feedback from the final showcase session. The design and structure of the program is discussed as well as possible future directions.
Resumo:
Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN, the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational – experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data.
Resumo:
Using the link-link incidence matrix to represent a simple-jointed kinematic chain algebraic procedures have been developed to determine its structural characteristics such as the type of freedom of the chain, the number of distinct mechanisms and driving mechanisms that can be derived from the chain. A computer program incorporating these graph theory based procedures has been applied successfully for the structural analysis of several typical chains.
Resumo:
While there is evidence that science and non-science background students display small differences in performance in basic and clinical sciences, early in a 4-year, graduate entry medical program, this lessens with time. With respect to anatomy knowledge, there are no comparable data as to the impact previous anatomy experience has on the student perception of the anatomy practical learning environment. A study survey was designed to evaluate student perception of the anatomy practical program and its impact on student learning, for the initial cohort of a new medical school. The survey comprised 19 statements requiring a response using a 5-point Likert scale, in addition to a free text opportunity to provide opinion of the perceived educational value of the anatomy practical program. The response rate for a total cohort of 82 students was 89%. The anatomy practical program was highly valued by the students in aiding their learning of anatomy, as indicated by the high mean scores for all statements (range: 4.04-4.7). There was a significant difference between the students who had and had not studied a science course prior to entering medicine, with respect to statements that addressed aspects of the course related to its structure, organization, variety of resources, linkage to problem-based learning cases, and fairness of assessment. Nonscience students were more positive compared to those who had studied science before (P levels ranging from 0.004 to 0.035). Students less experienced in anatomy were more challenged in prioritizing core curricular knowledge. © 2011 Wiley-Liss, Inc.
Resumo:
Hantaviruses, members of the genus Hantavirus in the Bunyaviridae family, are enveloped single-stranded RNA viruses with tri-segmented genome of negative polarity. In humans, hantaviruses cause two diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), which vary in severity depending on the causative agent. Each hantavirus is carried by a specific rodent host and is transmitted to humans through excreta of infected rodents. The genome of hantaviruses encodes four structural proteins: the nucleocapsid protein (N), the glycoproteins (Gn and Gc), and the polymerase (L) and also the nonstructural protein (NSs). This thesis deals with the functional characterization of hantavirus N protein with regard to its structure. Structural studies of the N protein have progressed slowly and the crystal structure of the whole protein is still not available, therefore biochemical assays coupled with bioinformatical modeling proved essential for studying N protein structure and functions. Presumably, during RNA encapsidation, the N protein first forms intermediate trimers and then oligomers. First, we investigated the role of N-terminal domain in the N protein oligomerization. The results suggested that the N-terminal region of the N protein forms a coiled-coil, in which two antiparallel alpha helices interact via their hydrophobic seams. Hydrophobic residues L4, I11, L18, L25 and V32 in the first helix and L44, V51, L58 and L65 in the second helix were crucial for stabilizing the structure. The results were consistent with the head-to-head, tail-to-tail model for hantavirus N protein trimerization. We demonstrated that an intact coiled-coil structure of the N terminus is crucial for the oligomerization capacity of the N protein. We also added new details to the head-to-head, tail-to-tail model of trimerization by suggesting that the initial step is based on interaction(s) between intact intra-molecular coiled-coils of the monomers. We further analyzed the importance of charged aa residues located within the coiled-coil for the N protein oligomerization. To predict the interacting surfaces of the monomers we used an upgraded in silico model of the coiled-coil domain that was docked into a trimer. Next the predicted target residues were mutated. The results obtained using the mammalian two-hybrid assay suggested that conserved charged aa residues within the coiled-coil make a substantial contribution to the N protein oligomerization. This contribution probably involves the formation of interacting surfaces of the N monomers and also stabilization of the coiled-coil via intramolecular ionic bridging. We proposed that the tips of the coiled-coils are the first to come into direct contact and thus initiate tight packing of the three monomers into a compact structure. This was in agreement with the previous results showing that an increase in ionic strength abolished the interaction between N protein molecules. We also showed that residues having the strongest effect on the N protein oligomerization are not scattered randomly throughout the coiled-coil 3D model structure, but form clusters. Next we found evidence for the hantaviral N protein interaction with the cytoplasmic tail of the glycoprotein Gn. In order to study this interaction we used the GST pull-down assay in combination with mutagenesis technique. The results demonstrated that intact, properly folded zinc fingers of the Gn protein cytoplasmic tail as well as the middle domain of the N protein (that includes aa residues 80 248 and supposedly carries the RNA-binding domain) are essential for the interaction. Since hantaviruses do not have a matrix protein that mediates the packaging of the viral RNA in other negatve stranded viruses (NSRV), hantaviral RNPs should be involved in a direct interaction with the intraviral domains of the envelope-embedded glycoproteins. By showing the N-Gn interaction we provided the evidence for one of the crucial steps in the virus replication at which RNPs are directed to the site of the virus assembly. Finally we started analysis of the N protein RNA-binding region, which is supposedly located in the middle domain of the N protein molecule. We developed a model for the initial step of RNA-binding by the hantaviral N protein. We hypothesized that the hantaviral N protein possesses two secondary structure elements that initiate the RNA encapsidation. The results suggest that amino acid residues (172-176) presumably act as a hook to catch vRNA and that the positively charged interaction surface (aa residues 144-160) enhances the initial N-RNA interacation. In conclusion, we elucidated new functions of hantavirus N protein. Using in silico modeling we predicted the domain structure of the protein and using experimental techniques showed that each domain is responsible for executing certain function(s). We showed that intact N terminal coiled-coil domain is crucial for oligomerization and charged residues located on its surface form a interaction surface for the N monomers. The middle domain is essential for interaction with the cytoplasmic tail of the Gn protein and RNA binding.
Resumo:
The structure of bovine prothrombin fragment 1 has been refined at 2.25 Å resolution using high resolution measurements made with the synchrotron beam at CHESS. The synchrotron data were collected photographically by oscillation methods (R-merge = 0.08). These were combined with lower order diffractometer data for refinement purposes. The structure was refined using restrained least-squares methods with the program PROLSQ to a crystallographic R-value of 0.175. The structure includes 105 water molecules with occupancies of >0·6. The first 35 residues (Ala1-Leu35) of the N-terminal ?-carboxy glutamic acid-domain (Ala1-Cys48) of fragment 1 are disordered as are two carbohydrate chains of Mr ? 5000; the latter two combine to render 40% of the structure disordered. The folding of the kringle of fragment 1 is related to the close intramolecular contact between the inner loop disulfide groups. Half of the conserved sequence of the kringle forms an inner core surrounding these disulfide groups. The remainder of the sequence conservation is associated with the many turns of the main chain. The Pro95 residue of the kringle has a cis conformation and Tyr74 is ordered in fragment 1, although nuclear magnetic resonance studies indicate that the comparable residue of plasminogen kringle 4 has two positions. Surface accessibility calculations indicate that none of the disulfide groups of fragment 1 is accessible to solvent.
Resumo:
A detailed analysis of structural and position dependent characteristic features of helices will give a better understanding of the secondary structure formation in globular proteins. Here we describe an algorithm that quantifies the geometry of helices in proteins on the basis of their C-alpha atoms alone. The Fortran program HELANAL can extract the helices from the PDB files and then characterises the overall geometry of each helix as being linear, curved or kinked, in terms of its local structural features, viz. local helical twist and rise, virtual torsion angle, local helix origins and bending angles between successive local helix axes. Even helices with large radius of curvature are unambiguously identified as being linear or curved. The program can also be used to differentiate a kinked helix and other motifs, such as helix-loop-helix or a helix-turn-helix (with a single residue linker) with the help of local bending angles. In addition to these, the program can also be used to characterise the helix start and end as well as other types of secondary structures.
Resumo:
Structural alignments are the most widely used tools for comparing proteins with low sequence similarity. The main contribution of this paper is to derive various kernels on proteins from structural alignments, which do not use sequence information. Central to the kernels is a novel alignment algorithm which matches substructures of fixed size using spectral graph matching techniques. We derive positive semi-definite kernels which capture the notion of similarity between substructures. Using these as base more sophisticated kernels on protein structures are proposed. To empirically evaluate the kernels we used a 40% sequence non-redundant structures from 15 different SCOP superfamilies. The kernels when used with SVMs show competitive performance with CE, a state of the art structure comparison program.
Resumo:
The region spanning residues 95-146 of the rotavirus nonstructural protein NSP4 from the asymptomatic human strain ST3 has been purified and crystallized and diffraction data have been collected to a resolution of 2.6 angstrom. Several attempts to solve the structure by the molecular-replacement method using the available tetrameric structures of this domain were unsuccessful despite a sequence identity of 73% to the already known structures. A more systematic approach with a dimer as the search model led to an unexpected pentameric structure using the program Phaser. The various steps involved in arriving at this molecular-replacement solution, which unravelled a case of subtle variation between different oligomeric states unknown at the time of solving the structure, are presented in this paper.
Resumo:
The rapidly growing structure databases enhance the probability of finding identical sequences sharing structural similarity. Structure prediction methods are being used extensively to abridge the gap between known protein sequences and the solved structures which is essential to understand its specific biochemical and cellular functions. In this work, we plan to study the ambiguity between sequence-structure relationships and examine if sequentially identical peptide fragments adopt similar three-dimensional structures. Fragments of varying lengths (five to ten residues) were used to observe the behavior of sequence and its three-dimensional structures. The STAMP program was used to superpose the three-dimensional structures and the two parameters (Sequence Structure Similarity Score (Sc) and Root Mean Square Deviation value) were employed to classify them into three categories: similar, intermediate and dissimilar structures. Furthermore, the same approach was carried out on all the three-dimensional protein structures solved in the two organisms, Mycobacterium tuberculosis and Plasmodium falciparum to validate our results.
Resumo:
Network theory applied to protein structures provides insights into numerous problems of biological relevance. The explosion in structural data available from PDB and simulations establishes a need to introduce a standalone-efficient program that assembles network concepts/parameters under one hood in an automated manner. Herein, we discuss the development/application of an exhaustive, user-friendly, standalone program package named PSN-Ensemble, which can handle structural ensembles generated through molecular dynamics (MD) simulation/NMR studies or from multiple X-ray structures. The novelty in network construction lies in the explicit consideration of side-chain interactions among amino acids. The program evaluates network parameters dealing with topological organization and long-range allosteric communication. The introduction of a flexible weighing scheme in terms of residue pairwise cross-correlation/interaction energy in PSN-Ensemble brings in dynamical/chemical knowledge into the network representation. Also, the results are mapped on a graphical display of the structure, allowing an easy access of network analysis to a general biological community. The potential of PSN-Ensemble toward examining structural ensemble is exemplified using MD trajectories of an ubiquitin-conjugating enzyme (UbcH5b). Furthermore, insights derived from network parameters evaluated using PSN-Ensemble for single-static structures of active/inactive states of 2-adrenergic receptor and the ternary tRNA complexes of tyrosyl tRNA synthetases (from organisms across kingdoms) are discussed. PSN-Ensemble is freely available from http://vishgraph.mbu.iisc.ernet.in/PSN-Ensemble/psn_index.html.