937 resultados para procession, soldier, mammals
Resumo:
We examined the summer distribution of marine mammals off the northern Washington coast based on six ship transect surveys conducted between 1995 and 2002, primarily from the NOAA ship McArthur. Additionally, small boat surveys were conducted in the same region between 1989 and 2002 to gather photographic identification data on humpback whales (Megaptera novaeangliae) and killer whales (Orcinus orca) to examine movements and population structure. In the six years of ship survey effort, 706 sightings of 15 marine mammal species were made. Humpback whales were the most common large cetacean species and were seen every year and a total of 232 sightings of 402 animals were recorded during ship surveys. Highest numbers were observed in 2002, when there were 79 sightings of 139 whales. Line-transect estimates for humpback whales indicated that about 100 humpback whales inhabited these waters each year between 1995 and 2000; in 2002, however, the estimate was 562 (CV= 0.21) whales. A total of 191 unique individuals were identified photographically and mark recapture estimates also indicated that the number of animals increased from under 100 to over 200 from 1995 to 2002. There was only limited interchange of humpback whales between this area and feeding areas off Oregon and California. Killer whales were also seen on every ship survey and represented all known ecotypes of the Pacific Northwest, including southern and northern residents, transients, and offshore-type killer whales. Dall’s porpoise (Phocoenoides dalli) were the most frequently sighted small cetacean; abundance was estimated at 181−291 individuals, except for 2002 when we observed dramatically higher numbers (876, CV= 0.30). Northern fur seals (Callorhinus ursinus) and elephant seals (Mirounga angustirostris) were the most common pinnipeds observed. There were clear habitat differences related to distance offshore and water depth for different species.
Resumo:
Value of length growth parameters L∞, K and t(sub)0 from age-length relation obtained from length-frequency analysis for the soldier catfish stock were estimated to be 47.6 cm, 0.51 per year and 0.03 year respectively. The age at recruitment (t [sub]r) was 0.58 year and the age at first capture (t[sub]c) 0.83 year. The total mortality (Z) was 0.88 including the present natural mortality (M) of 0.84 and fishing mortality (F) of 0.04. The total stock of this fish along the Northwest coast of India was assessed to be 32,413 tons and the MSY 5,426 tons which is much higher than the current catch of 863.8 tons. The potential yield (P[sub]y) of 38.7 g per recruit could be obtained at the optimum of exploitation (t[sub]y) of 2.84 years.
Resumo:
To better understand the evolution of genome organization of eutherian mammals, comparative maps based on chromosome painting have been constructed between human and representative species of three eutherian orders: Xenarthra, Pholidota, and Eulipotyphla,
Resumo:
The precise hierarchy of ancient divergence events that led to the present assemblage of modern placental mammals has been an area of controversy among morphologists, palaeontologists and molecular evolutionists. Here we address the potential weaknesses o
Resumo:
Divergence of proteins in signaling pathways requires ligand and receptor coevolution to maintain or improve binding affinity and/or specificity. In this paper we show a clear case of coevolution between the prolactin (PRL) gene and its receptor (prolactin receptor, PRLR) in mammals. First we observed episodic evolution of the extracellular and intracellular domains of the PRLR, which is closely consistent with that seen in PRL. Correlated evolution was demonstrated both between PRL and its receptor and between the two domains of the PRLR using Pearson's correlation coefficient. On comparing the ratio of the nonsynonymous substitution rate to synonymous substitution rate (omega=d(N)/d(S)) for each branch of the star phylogeny of mammalian PRLRs, separately for the extracellular domain (ECD) and the transmembrane domain/intracellular domain (TMD/ICD), we observed a lower omega ratio for ECD than TMD/ICD along those branches leading to pig, dog and rabbit but a higher ratio for ECD than TMD/ICD on the branches leading to primates, rodents and ruminants, on which bursts of rapid evolution were observed. These observations can be best explained by coevolution between PRL and its receptor and between the two domains of the PRLR.
Resumo:
An analysis of the nuclear beta-fibrinogen intron 7 locus from 30 taxa representing 12 placental orders of mammals reveals the enriched occurrences of short interspersed clement (SINE) insertion events. Mammalian-wide interspersed repeats (MIRs) are present at orthologous sites of all examined species except those in the order Rodentia. The higher substitution rate in mouse and a rare MIR deletion from rat account for the absence of MIR in the rodents. A minimum of five lineage-specific SINE sequences are also found to have independently inserted into this intron in Carnivora, Artiodactyla and Lagomorpha. In the case of Carnivora, the unique amplification pattern of order-specific CAN SINE provides important evidence for the "pan-carnivore" hypothesis of this repeat element and reveals that the CAN SINE family may still be active today. Particularly interesting is the finding that all identified lineage-specific SINE elements show a strong tendency to insert within or in very close proximity to the preexisting MIRs for their efficient integrations, suggesting that the MIR clement is a hot spot for successive insertions of other SINEs. The unexpected MIR excision as a result of a random deletion in the rat intron locus and the non-random site targeting detected by this study indicate that SINEs actually have a greater insertional flexibility and regional specificity than had previously been recognized. Implications for SINE sequence evolution upon and following integration, as well as the fascinating interactions between retroposons and the host genomes are discussed.
Resumo:
The CD59-coding sequences were obtained from 5 mammals by PCR and BLAST, and combined with the available sequences in GenBank, the nucleotide substitution rates of mammalian cd59 were calculated. Results of synonymous and nonsynonymous substitution rates
Resumo:
Background: Hair is unique to mammals. Keratin associated proteins (KRTAPs), which contain two major groups: high/ultrahigh cysteine and high glycine-tyrosine, are one of the major components of hair and play essential roles in the formation of rigid and
Resumo:
Pheromones are chemical cues released and sensed by individuals of the same species, which are of major importance in regulating reproductive and social behaviors of mammals. Generally, they are detected by the vomeronasal system (VNS). Here, we first investigated and compared an essential genetic component of vomeronasal chemoreception, that is, TRPC2 gene, of four marine mammals varying the degree of aquatic specialization and related terrestrial species in order to provide insights into the evolution of pheromonal olfaction in the mammalian transition from land to water. Our results based on sequence characterizations and evolutionary analyses, for the first time, show the evidence for the ancestral impairment of vomeronasal pheromone signal transduction pathway in fully aquatic cetaceans, supporting a reduced or absent dependence on olfaction as a result of the complete adaptation to the marine habitat, whereas the amphibious California sea lion was found to have a putatively functional TRPC2 gene, which is still under strong selective pressures, reflecting the reliance of terrestrial environment on chemical recognition among the semiadapted marine mammals. Interestingly, our study found that, unlike that of the California sea lion, TRPC2 genes of the harbor seal and the river otter, both of which are also semiaquatic, are pseudogenes. Our data suggest that other unknown selective pressures or sensory modalities might have promoted the independent absence of a functional VNS in these two species. In this respect, the evolution of pheromonal olfaction in marine mammals appears to be more complex and confusing than has been previously thought. Our study makes a useful contribution to the current understanding of the evolution of pheromone perception of mammals in response to selective pressures from an aquatic environment.
Resumo:
With comparative genomics approaches, we evaluated the evolutionary characteristics of conservation of exons which are expressed abundantly, moderately or lowly in mammals. Using non-coding regions and pseudogenes as controls, sequence identity, phastCons
Resumo:
The shore margins of Lakes in the Victoria basin are highly dented and mostly swampy, fringed by Papyrus and other wetland vegetation types important habitats for herpetofauna and wetland adapted mammals. Of recent, the extent of the 'wetland' has been extended in several places by the Water Hyacinth (Eichornia cryaseps). Ecologically, amphibians are important in many ways; they are mostly predators, acting as primary and secondary carnivores. Their prey consists mostly of insects, some of which are pests to crops or disease vectors. They are also inter-inked in food chains, often acting as food for other vertebrates, such as pigs, birds, snakes and sometimes man. Because of their ectothermic physiology, the life history and ecology of amphibians often differ markedly from that of birds or mammals (McCollough el ai, (992).Amphibians are known to be an easily recognisable taxon in given habitats; and populations are sometimes specialised within a narrow habitat. This makes it easy and practical to monitor changes in composition over time, given different onditions (Heyer el al 1994, Phillips 1990). Impacts on their habitat are reflected in changes in numbers and species diversity in a short time. These are some of the factors that have made amphibians to be recognised, nowadays, as good indicators of habitat change