957 resultados para processing of beta subunits
Resumo:
The objective of this investigation was to examine in a systematic manner the influence of plasma protein binding on in vivo pharmacodynamics. Comparative pharmacokinetic-pharmacodynamic studies with four beta blockers were performed in conscious rats, using heart rate under isoprenaline-induced tachycardia as a pharmacodynamic endpoint. A recently proposed mechanism-based agonist-antagonist interaction model was used to obtain in vivo estimates of receptor affinities (K(B),(vivo)). These values were compared with in vitro affinities (K(B),(vitro)) on the basis of both total and free drug concentrations. For the total drug concentrations, the K(B),(vivo) estimates were 26, 13, 6.5 and 0.89 nM for S(-)-atenolol, S(-)-propranolol, S(-)-metoprolol and timolol. The K(B),(vivo) estimates on the basis of the free concentrations were 25, 2.0, 5.2 and 0.56 nM, respectively. The K(B),(vivo)-K(B),(vitro) correlation for total drug concentrations clearly deviated from the line of identity, especially for the most highly bound drug S(-)-propranolol (ratio K(B),(vivo)/K(B),(vitro) similar to 6.8). For the free drug, the correlation approximated the line of identity. Using this model, for beta-blockers the free plasma concentration appears to be the best predictor of in vivo pharmacodynamics. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:3816-3828, 2009
Resumo:
Microencapsulation of lemon oil was undertaken with beta-cyclodextrin using a precipitation method at the five lemon oil to beta-cyclodextrin ratios of 3:97, 6:94, 9:91, 12:88, and 15:85 (w/w) in order to determine the effect of the ratio of lemon oil to beta-cyclodextrin on the inclusion efficiency of beta-cyclodextrin for encapsulating oil volatiles. The retention of lemon oil volatiles reached a maximum at the lemon oil to beta-cyclodextrin ratio of 6:94; however, the maximum inclusion capacity of beta-cyclodextrin and a maximum powder recovery were achieved at the ratio of 12:88, in which the beta-cyclodextrin complex contained 9.68% (w/w) lemon oil. The profile and proportion of selected flavor compounds in the beta-cyclodextrin complex and the starting lemon oil were not significantly different.
Resumo:
Background-Catecholamines hasten cardiac relaxation through beta-adrenergic receptors, presumably by phosphorylation of several proteins, but it is unknown which receptor subtypes are involved in human ventricle. We assessed the role of beta(1)- and beta(2)-adrenergic receptors in phosphorylating proteins implicated in ventricular relaxation. Methods and Results-Right ventricular trabeculae, obtained from freshly explanted hearts of patients with dilated cardiomyopathy (n=5) or ischemic cardiomyopathy (n=5), were paced at 60 bpm. After measurement of the contractile and relaxant effects of epinephrine (10 mu mol/L) or zinterol (10 mu mol/L), mediated through beta(2)-adrenergic receptors, and of norepinephrine (10 mu mol/L), mediated through beta(1)-adrenergic receptors, tissues were freeze clamped. We assessed phosphorylation of phospholamban, troponin I, and C-protein, as well as specific phosphorylation of phospholamban at serine 16 and threonine 17, Data did not differ between the 2 disease groups and were therefore pooled. Epinephrine, zinterol, and norepinephrine increased contractile force to approximately the same extent, hastened the onset of relaxation by 15+/-3%, 5+/-2%, and 20+/-3%, respectively, and reduced the time to half-relaxation by 26+/-3%, 21+/-3%, and 37+/-3%. These effects of epinephrine, zinterol, and norepinephrine were associated with phosphorylation (pmol phosphate/mg protein) of phospholamban 14+/-3, 12+/-4, and 12+/-3, troponin I 40+/-7, 33+/-7, and 31+/-6; and C-protein 7.2+/-1.9, 9.3 +/- 1.4, and 7.5 +/- 2.0. Phosphorylation of phospholamban occurred at both Ser16 and Thr17 residues through both beta(1)- and beta(2)-adrenergic receptors. Conclusions-Norepinephrine and epinephrine hasten human ventricular relaxation and promote phosphorylation of implicated proteins through both beta(1)- and beta(2)-adrenergic receptors, thereby potentially improving diastolic function.
Resumo:
Mechanically skinned skeletal muscle fibres from rat and toad were exposed to the permeabilizing agents beta-escin and saponin. The effects of these agents on the sealed transverse tubular system (t-system) and sarcoplasmic reticulum (SR) were examined by looking at changes in the magnitude of the force responses to t-system depolarization, the time course of the fluorescence of fura-2 trapped in the sealed t-system, and changes in the magnitude of caffeine-induced contractures following SR loading with Ca2+ under defined conditions. In the presence of 2 mu g ml(-1) beta-escin and saponin, the response to t-system depolarization was not completely abolished, decreasing to a plateau, and a large proportion of fura-2 remained in the sealed t-system. At 10 mu g ml(-1), both agents abolished the ability of both rat and toad preparations to respond to t-system depolarization after 3 min of exposure, but a significant amount of fura-2 remained in sealed t-tubules even after exposure to 100 mu g ml(-1) beta-escin and saponin for 10 min. beta-Escin took longer than saponin to reduce the t-system depolarizations and fura-2 content of the sealed t-system to a similar level. The ability of the SR to load Ca2+ was reduced to a lower level after treatment with beta-escin than saponin. This direct effect on the SR occurred at much lower concentrations for rat (2 mu g ml(-1) beta-escin and 10 mu g ml(-1) saponin) than toad (10 mu g ml(-1) beta-escin and 150 mu g ml(-1) saponin). The reverse order in sensitivities to beta-escin and saponin of t-system and SR membranes indicates that the mechanisms of action of beta-escin and saponin are different in the two types of membrane. In conclusion, this study shows that: (1) beta-escin has a milder action on the surface membrane than saponin; (2) beta-escin is a more potent modifier of SR function; (3) simple permeabilization of membranes is not sufficient to explain the effects of beta-escin and saponin on muscle membranes; and (4) the t-system network within muscle fibres is not a homogeneous compartment.
Resumo:
A series of inhibitors of beta-amyloid formation have been developed based on the beta-secretase cleavage site (VNL-DA) of the Swedish mutant Amyloid Precursor Protein. A simple tripeptide aldehyde was found to be the most potent (IC50 = 700 nM) in the series displaying an inhibitory profile which is different from reported inhibitors of beta-amyloid formation. (C) 2000 Academic Press.
Resumo:
1 The smooth muscle relaxant responses to the mixed beta(3)-, putative beta(4)-adrenoceptor agonist, (-)-CGP 12177 in rat colon are partially resistant to blockade by the beta(3)-adrenoceptor antagonist SR59230A suggesting involvement of beta(3)- and putative beta(4)-adrenoceptors. We now investigated the function of the putative beta(4)-adrenoceptor and other beta-adrenoceptor subtypes in the colon, oesophagus and ureter of wild-type (WT) and beta(3)-adrenoceptor knockout (beta(3)KO) mice. 2 (-)-Noradrenaline and (-)-adrenaline relaxed KCl (30 mM)-precontracted colon mostly through beta(1)-and beta(3)-adrenoceptors to a similar extent and to a minor extent through beta(2)-adrenoceptors. In colon from beta(3)KO mice, (-)-noradrenaline was as potent as in WT mice but the effects were mediated entirely through beta(1)-adrenoceptors. (-)-CGP 12177 relaxed colon from beta(3)KO mice with 2 fold greater potency than in WT mice. The maintenance of potency for (-)-noradrenaline and increase for (-)-CGP 12177 indicate compensatory increases in beta(1)- and putative beta(4)-adrenoceptor function in beta(3)KO mice. 3 In oesophagi precontracted with 1 mu M carbachol, (-)-noradrenaline caused relaxation mainly through beta(1)-and beta(3)-adrenoceptors. (-)-CGP 12177 (2 mu M) relaxed oesophagi from WT by 61.4+/-5.1% and beta(3)KO by 67.3+/-10.1% of the (-)-isoprenaline-evoked relaxation, consistent with mediation through putative beta(4)-adrenoceptors. 4 In ureter, (-)-CGP 12177 (2 mu M) reduced pacemaker activity by 31.1+/-2.3% in WT and 31.3+/-7.5% in beta(3)KO, consistent with mediation through putative beta(4)-adrenoceptors. 5 Relaxation of mouse colon and oesophagus by catecholamines are mediated through beta(1)- and beta(3)- adrenoceptors in WT. The putative beta(4)-adrenoceptor, which presumably is an atypical state of the beta(1)-adrenoceptor, mediates the effects of(-)-CGP 12177 in colon, oesophagus and ureter.
Resumo:
Background-In adult human heart, both beta(1)- and beta(2)-adrenergic receptors mediate hastening of relaxation; however, it is unknown whether this also occurs in infant heart. We compared the effects of stimulation of beta(1)- and beta(2)-adrenergic receptors on relaxation and phosphorylation of phospholamban and troponin I in ventricle obtained from infants with tetralogy of Fallot. Methods and Results-Myocardium dissected from the right ventricular outflow tract of 27 infants (age range 2-1/2 to 35 months) with tetralogy of Fallot was set up to contract 60 times per minute. Selective stimulation of beta(1)-adrenergic receptors with (-)-norepinephrine (NE) and beta(2)-adrenergic receptors with (-)-epinephrine (EPI) evoked phosphorylation of phospholamban (at serine-16 and threonine-17) and troponin I and caused concentration-dependent increases in contractile force (-log EC50 [mol/L] NE 5.5+/-0.1, n=12; -EPI 5.6+/-0.1, n=13 patients), hastening of the time to reach peak force (-log EC50 [mol/L] NE 5.8+/--0.2; EPI 5.8+/-0.2) and 50% relaxation (-log EC50 [mol/L] NE 5.7+/-0.2: EPI 5.8+/-0.1), Ventricular membranes from Fallot infants, labeled with (-)-[I-125]-cyanopindolol, revealed a greater percentage of beta(1)- (71%) than beta(2)-adrenergic receptors (29%). Binding of (-)-epinephrine to beta(2)-receptors underwent greater GTP shifts than binding of (-)-norepinephrine to beta(1)-receptors. Conclusions-Despite their low density, beta(2)-adrenergic receptors are nearly as effective as beta(1)-adrenergic receptors of infant Fallot ventricle in enhancing contraction, relaxation, and phosphorylation of phospholamban and troponin I, consistent with selective coupling to G(s)-protein.
Resumo:
Little is known of the neural mechanisms of marsupial olfaction. However, functional magnetic resonance imaging (fMRI) has made it possible to visualize dynamic brain function in mammals without invasion. In this study, central processing of urinary pheromones was investigated in the brown antechinus, Antechinus stuartii, using fMRI. Images were obtained from 18 subjects (11 males, 7 females) in response to conspecific urinary olfactory stimuli. Significant indiscriminate activation occurred in the accessory olfactory bulb, entorhinal, frontal, and parietal cortices in response to both male and female urine. The paraventricular nucleus of hypothalamus, ventrolateral thalamic nucleus, and medial preoptic area were only activated in response to male urine. Results of this MRI study indicate that projections of accessory olfactory system are activated by chemo-sensory cues. Furthermore, it appears that, based on these experiments, urinary pheromones may act on the hypothalamo-pituitary-adrenocortical axis via the paraventricular nucleus of the hypothalamus and may play an important role in the unique life history pattern of A. stuartii. Finally, this study has demonstrated that fMRI may be a powerful tool for investigations of olfactory processes in mammals.
Resumo:
Aspergillus versicolor grown on xylan or xylose produces two beta-xylosidases with differences in biochemical properties and degree of glycosylation. We investigated the alterations in the biochemical properties of these beta-xylosidases after deglycosylation with Endo-H or PNGase F. After deglycosylation, both enzymes migrated faster in PAGE or SDS-PAGE exhibiting the same R(f). Temperature optimum of xylan-induced and xylose-induced beta-xylosidases was 45A degrees C and 40A degrees C, respectively, and 35A degrees C after deglycosylation. The xylan-induced enzyme was more active at acidic pH. After deglycosylation, both enzymes had the same pH optimum of 6.0. Thermal resistance at 55A degrees C showed half-life of 15 min and 9 min for xylose- and xylan-induced enzymes, respectively. After deglycosylation, both enzymes exhibited half-lives of 7.5 min. Native enzymes exhibited different responses to ions, while deglycosylated enzymes exhibited identical responses. Limited proteolysis yielded similar polypeptide profiles for the deglycosylated enzymes, suggesting a common polypeptide core with differential glycosylation apparently responsible for their biochemical and biophysical differences.
Resumo:
The production of beta-fructofuranosidases by Aspergillus niveus, cultivated under submerged fermentation using agroindustrial residues, was investigated. The highest productivity of beta-fructofuranosidases was obtained in Khanna medium supplemented with sugar cane bagasse as carbon source. Glucose enhanced the production of the intracellular enzyme, whereas that of the extracellular one was decreased. The intracellular beta-fructofuranosidase was a trimeric protein of approximately 141 kDa (gel filtration) with 53.5% carbohydrate content, composed of 57 kDa monomers (SDS-PAGE). The optimum temperature and optimum pH were 60 degrees C and 4.5, respectively. The purified enzyme showed good thermal stability and exhibited a half-life of 53 min at 60 degrees C. beta-Fructofuranosidase activity was slightly activated by Cu(2+), Mn(2+), Mg(2+), and Na(+) at 1 mM concentration. The enzyme hydrolyzed sucrose, raffinose, and inulin, with K(d) values of 5.78 mM, 5.74 mM, and 1.74 mM, respectively. (C) 2008 Elsevier Ltd. All rights reserved.